Praise for

Wine Myths, Facts & Snobberies

“If you love science or if you love wine, and especially if you love the science of wine, this book is for you! Daniel takes a complex process and distills the essence with didactic skill and imagination. Drink it all in to your heart’s content.”
—JOE SCHWARCZ, Ph.D., Director,
McGill University Office for Science and Society

“This is an excellent, detailed work on the science behind wine and winemaking that delves deeply into the subject matter. It answers all of the common questions with uncommon technical detail, and makes a useful reference tool for anyone who has made or is considering making wine, professional sommeliers, as well as highly inquisitive wine drinkers.”
—JOHN SZABO, Master Sommelier (MS), wine writer

“This book is a authoritative distillation of much of the latest science on the healthy benefits of wine. I strongly recommend Wine Myths, Facts and Snobberies to everyone who is interested in both the art and science of wine.”
—JOSEPH C. MAROON, M.D., author of The Longevity Factor: How Resveratrol and Red Wine Activate Genes for a Longer and Healthier Life
BY THE SAME AUTHOR

Techniques in Home Winemaking
The Comprehensive Guide to Making Château-Style Wines

Kit Winemaking
The Illustrated Beginner’s Guide to Making Wines from Concentrate
Wine Myths, Facts & Snobberies

81 Questions & Answers on the Science and Enjoyment of Wine

Daniel Pambianchi

Véhicule Press
Disclaimer

This book contains commentaries related to the science of wine, including winemaking, wine tasting, and wine and health. It offers opinions, presents scientific and medical research, some conclusive and some inconclusive, and expert knowledge from academia, the wine industry and literature. However, the information contained herein should not be construed as professional advice for the diagnosis or treatment of faulty wines or health problems; readers should always consult with qualified enologists for winemaking advice or medical doctors for any matter related to wine and health.

Neither the author, nor the publisher, nor the editors assume any responsibility for the use or misuse of information contained in this book.

About the Author

You can follow Daniel Pambianchi’s work on his website and blog at http://www.TechniquesInHomeWinemaking.com/blog/ and on Facebook by becoming a fan of Techniques In Home Winemaking.
Acknowledgements 8
Preface 9

About Wine-speak and Scientific Terminology 10
Wine and Winemaking Science 13
 Wine Styles 71
 Wine Faults 96
 Wine Service 120
Winecraft or Witchcraft? 140
Wine and Health 155
Wine Frauds 182

Epilogue 195
References 199
Index 209
Acknowledgements

This book spans several fields of science, some perhaps not so scientific; nonetheless, it involves consultations with and reviews by many, many experts, from winemakers to microbiologists and chemists to nutrition experts and neurosurgeons. I wish to specifically acknowledge the tremendous support of, and technical reviews by, Arthur Harder, a consulting winemaker to wineries in the Niagara region in Ontario and head winemaker at Maleta Winery; my chemistry professor and French wine aficionado Dr. Ariel Fenster from the Office for Science and Society at McGill University in Montréal, Québec; and Dr. Eric L. Gibbs of High-Q, Inc. who relentlessly crusades for PET bottle technology. I am also indebted to my dear friend Angela Campbell who meticulously reviewed the manuscript, and Fred Couch whose photography and photo-editing experience was invaluable. And of course, this project would not have been possible without the continued support of Simon Dardick and Nancy Marrelli, publishers of Véhicule Press, and their team. To each and every one and all my readers, and in the name of knowledge and good health, I raise a glass of (good) wine and say Thank You.
Wine is a fascinating subject. With its rich history dating back more than six thousand years and wine’s current cultural status as a “higher” and healthier beverage, it is fraught with tradition, myths, beliefs and snobberies that span how to farm vineyards and grow grapes, how to make wine, how to serve it, and the health benefits of drinking wine—some are true, some aren’t, and some are plain unbelievable, bordering on laughable.

With our knowledge of natural and pure and applied sciences, we can now explain and demystify traditions and snobberies, and debunk myths and beliefs. We certainly don’t have all the answers on what is a very complex subject, but we can postulate reasonable hypotheses.

The objective of this book then is to provide commentaries, based on this scientific knowledge of wine, on facts, myths and snobberies encountered in our everyday interactions with wine. The commentaries are based on questions often posed to me as part of my work in the wine industry, notably during wine tours and tutored tastings, and my own curiosity that have lead me to research topics.

But be forewarned; many opinions and beliefs, whether scientifically proven or emotionally charged, are controversial. And so it is with this fascinating art of anything and everything that is wine.

So pour yourself a glass of wine, sit back, and enjoy the read; you may want to keep the bottle close-by.
About Wine-speak and Scientific Terminology

Winemaking—what some call *viniculture*—and the wine business have been greatly influenced by Europeans, particularly the French, who have developed an extensive wine vocabulary. To a large extent, French, Italian, German, Spanish and Portuguese terms from these Old World wine regions are still used in their original native language within New World wine regions while others have been translated. But some European words are often more accurate in their original language or simply cannot be translated; the best example is the use of the word *terroir* (see page 13 for the definition) for which no other language seems to have an appropriate translation to define the concepts. For these reasons, I have chosen to include such terms in their original language, in italics, and provided translations now commonly used in the English language. And because of the European influence on global winemaking, I provide all units of measures using the Metric system (also known as the International System of Units or *Système International d’Unités* (SI) in French) along with conversions to the U.S. system in parenthesis.

Likewise, every branch of science has its own specific terminology, language and form. In this book, I refer to any living
organisms and microorganisms by their binomial names, in italic as is standard practice, according to current taxonomy (the classification of living organisms) rules. Binomial names are often derived from Latin or Greek words. On the first occurrence of a binomial name, the complete genus and species names are provided, and then the genus name is abbreviated as is usually done; for example, most wine yeasts belong to the species *Saccharomyces cerevisiae*, and is abbreviated to *S. cerevisiae*. Note that the genus name is treated as a proper noun, i.e., the first letter is capitalized, and the species name is treated as a common noun. It is often also more common to refer to organisms by 1) their species name only when the genus is understood—for example, winemakers talk about *vinifera* grapes in reference to *Vitis vinifera* grapes; or by 2) their more popular genus name when species are secondary—for example, winemakers refer to the yeast responsible for imparting a barnyard smell to wine as *Brettanomyces* in reference to *Brettanomyces bruxellensis*.

And there is also a lot of chemistry involved in understanding wine science. Here too, terminology can be overwhelming as various names are used by laypeople, winemakers, scientists, and professional agencies to describe the same compound; for example, what we all know as *vinegar* is commonly referred to as *acetic acid*, although it is also known as *methane-carboxylic acid* and *ethanoic acid*, as defined by IUPAC (International Union of Pure and Applied Chemistry) standards. IUPAC names tend to be more descriptive of the actual molecular structure and can be more useful in certain contexts. Here, we use a combination of both common and IUPAC names as usage varies between winemakers, wine chemists and enophiles.
Wine and Winemaking Science

Although wine has been made since the early days of civilization, some six thousand or more years ago, winemaking is still largely considered an art as the science of winemaking only started taking shape in the second half of the nineteenth century.

Winemaking, the art, is steeped in tradition in Old World wine regions, mainly western European countries with France having the most influence with their concept of *terroir*. Terroir refers to the amalgam of vineyard location, soil composition, microclimate, viticultural and winemaking practices all interacting to produce wine specific to the region or even to a vineyard parcel and which cannot be replicated anywhere else—or what some define as a “sense of place.”

Winemaking, the science, was really born in 1857 when French chemist and “microbiologist” Louis Pasteur (1822–1895) proved that yeasts were in fact living organisms and that these were responsible for what he termed *alcoholic fermentation* in the production of wine from grape juice. Pasteur’s new theory was in sharp contrast to Dutch naturalist Antoni van Leeuwenhoek’s (1632–1723) hypothesis that yeasts were not living organisms, which he first observed two centuries earlier in 1684 using a microscope he had developed.

In post-Prohibition years, Americans and immigrants that had
settled in the U.S. at the turn of the twentieth century rekindled interest in winemaking and re-launched the wine industry in America. However, it was not until the second half of the century that significant scientific research and development took place in New World wine regions such as the U.S. and Australia. In the nascent globalization of wine, the New World spearheaded technological changes fueled by a strong desire to make better wines akin to the best wines of France and to become world players in a fast growing market.

Enology, the science and study of winemaking, has since progressed tremendously to provide an ever-increasing understanding of the complex chemical reactions that not only transform grape juice into wine but also involve the causes of many kinds of spoilage. A friend once remarked that winemaking had become too “clinical,” referring to the extensive use of science and laboratory analysis at the expense of the art. Perhaps so, but I believe in scientific progress, and particularly in winemaking where ultimately the goal is in understanding wines better and making better wines.

In this section we examine various aspects of viticulture and winemaking to understand what science has revealed and snuff out myths.
Wine Styles

I am reminded of the hilarious quote from a fictitious scene unfolding in a restaurant and the patron asking for the wine list: “Monsieur! We have red wine and we have white wine,” replied the waiter.

To those not partial to wine, some might wish it would be that simple—red or white. But life is not simple nor is it uninteresting, and wine would be just a boring, inconsequential beverage if it were not for its complexity and the plethora of styles. Wine is much more than just a drink or even a drink to complement food.

Wine is a mystical elixir that fosters friendship—or what Jonathan Nossiter (director of the film Mondovino) describes in Liquid Memory as “a vector of exchange between human beings,” and conviviality, good health, and joie de vivre, unmatched by any other food or beverage. Every bottle has a story, whether it is about the vineyard, the vintage, the winery’s or winemaker’s reputation or label or perhaps even a special purchase from that memorable vacation in wine country. It is also the most adaptable beverage. It can be drunk on its own as an aperitif or for a fireside tête-à-tête, with food, with or as dessert, to celebrate a special occasion or to enjoy with a fine cigar or chocolate. There is a plethora of kinds and styles to suit any occasion or palate—from dry whites and full-bodied reds...
WINE MYTHS, FACTS & SNOBBERIES

to rosés and off-dry or medium-sweet whites, sparkling wine, Icewine, Port, Sherry, oaked, unoaked, and organic wines. Technical know-how and technology aside, styles are only limited by the winemaker’s creativity. But creativity requires setting aside those biases rooted in tradition.

In this section we answer questions often asked about the different kinds and styles of wines, the differences between wines in the same category, such as Port, and how these are produced. In the section Wine Service, we will look at why certain wines are best enjoyed with certain kinds of food.
WINE STYLES

Lees being stirred in a barrel of Chardonnay wine.

Frozen Vidal grapes on the vine ready for harvesting to make Icewine.
Your guests are comfortably seated at the dinner table waiting to be delighted by your culinary talents but mainly by your wine selection. After all, you have been praising and hyping that special bottle of wine—the one you proudly made or brought back from your last trip to Tuscany—waiting for the right occasion to be opened. With all eyes on the bottle, you engage into a soliloquy of superlatives to build up more suspense as you carefully remove the foil and uncork the bottle with that music-to-the-ear pop. Everything is perfect. You pour yourself a splash into a big goblet. You take a quick sniff. The look on your face quickly changes from cheerful to troubled and your guests can sense something is wrong. You take a sip, swoosh it in your mouth, but the taste confirms your worst fears. The wine is “corked.” It smells musty, sort of like wet newspaper, and it is devoid of those promised fruity aromas. What a disappointment! How to explain this to your guests?

This is not an uncommon occurrence quite unfortunately. So often, especially when expectations are set high, a bottle of disappointingl flawed wine can send you in a frenzy searching for causes at the root of the problem. Whether the wine is corked, oxidized, smells of barnyard, or perhaps of rotten eggs, you are suddenly at a loss trying to understand what happened, even more
so if you are the winemaker. It is a wine aficionado’s or winemaker’s worst nightmare.

Given wine’s complex chemistry, biochemistry, and microbiology, it is highly prone to a range of instabilities that can suddenly or serendipitously translate into faults or spoilage. The winemaker’s duty is to process wine to avoid such faults or spoilage that could occur under normal conditions but the bigger challenge is protecting wine that is subjected to abnormal conditions, such as stored in a refrigerator for an extended period of time or, quite the opposite, the bottle is stored in the trunk of a car on a hot summer day.

In this section, we will examine some of the more common wine faults and try to understand where they originate. This should help you assess whether or not to return with confidence a faulty bottle to the sommelier when dining in a fine establishment.

I understand the concept of oxidation in wines and I can recognize an oxidized wine but what is meant by “a wine is reduced”? I am sure it has nothing to do with how much wine is left in the bottle. Most wine drinkers can recognize an oxidized wine—it takes on nutty-like aromas and the color shows brown hues in reds and golden hues in whites but it seems that only experienced wine tasters can detect—or know about—reduction. Let’s examine the underlying chemistry to see what is happening.

Oxidation is a chemical reaction where a substance loses electrons or which may acquire oxygen or lose hydrogen atoms. Reduction is the inverse—that is, a chemical reaction where a substance gains electrons or which may lose oxygen or gain hydrogen atoms. To the chemist, oxidation and reduction are more precisely an increase and decrease in oxidation number, respectively, but we will use the former definition for simplicity. An oxidizing agent is known
Chateau Montelena’s 1973 Chardonnay placed first at the 1976 Paris Tasting.

The Vino-Lok® glass closure. Could this be the closure of the future?
Wine Service

Wine appreciation is often described as snobbish. Who can blame the critics? After all, serious aficionados can spend considerable time swirling that lusciously überwine in their mouths before they swallow and then describing it with endless poetic prose, speaking of the wine as being fruit-forward and stylish with intertwined layers of sweet exotic fruit, a soupçon of black currant and oodles of frutta di bosco aromas framed by subtle earthy flavors, buttressed with firm though well-integrated tannins and a lingering finish. Then there is that whole bottle uncorking, decanting, and serving ritual that one must consider.

In this section, we will examine some topics of practical importance on the science of wine service and appreciation and demystify certain rituals.

Do Riedel glasses really make a difference in the taste of wine? Should wine be decanted? And what is all the fuss about choosing the “right” wine for specific foods?

Read on.
Winecraft or Witchcraft?

It is often said that winemaking is part art and part science. Surely any craft as old and as intriguing as winemaking holds an element of artistry but when the expression of personal convictions and scientifically unsubstantiated claims blur the line between art and science, the art can sometimes border on the paranormal and the science on witchcraft. The huge disparities in beliefs and winemaking methods, now coupled with the green movement and sustainable agricultural practices, have created diametrically opposed camps in winemaking philosophy.

This extends to wine appreciation too. Gizmos and gadgets flooding the market and which promise to enhance the wine tasting experience seem to be taking a life of their own.

So how serious is biodynamic farming and winemaking?
Does the cycle of the moon affect winemaking?
Do “wine enhancers” or wine magnets alter or improve wine?
These are a few of the topics discussed in this section.
WINECRAFT OR WITCHCRAFT?

Traditional viticulture currently practised at Tawse Winery, Ontario.
Courtesy of Fred Couch.

Dung-filled cow horns being prepared for eventual burial in the vineyard.
Courtesy of Montinore Estate.
Wine and Health

The use of wine and our strong convictions of its health benefits, abstainers and teetotalers notwithstanding, are probably as old as wine itself dating back to the first civilizations in the ancient world. In Mesopotamia ca. the third millennium BC, the Babylonians believed wine to have medicinal and therapeutic effects and it was considered so pure and free of contaminations that it was preferred—along with beer—over water. In Ancient Egypt more than two thousand years BC, wine also became a common ingredient in “prescription drugs” for curing a variety of ailments. The drugs were formulated using other ingredients too, such as water and particularly those derived from medicinal plants.

And stories abound from the Far East where the Chinese would lace wine with animal parts to concoct drugs to cure just about any ailment. Even Hippocrates, the father of medicine who had a keen sense of physiological and metabolic reactions in the human body not only used wine as a prescription drug in Ancient Greece but also pioneered it into an antiseptic for treating wounds.

The link between wine and its medicinal and therapeutic benefits grew stronger through the various eras and Middle Ages up to modern times. So compelling was the link that following the decreasing death rate of convicts and migrants who were treated
with wine aboard Australia-bound ships in the early part of the nineteenth century, it spawned the founding of vineyards and wineries by British doctors throughout the rest of the century. Many such wineries have grown into global businesses responsible for some of the largest wine outputs in the world. For example, Lindemans and Penfolds were founded in the early 1840s by Drs. Henry J. Lindeman and Christopher R. Penfold, respectively.

But as wine became integral to religions from Biblical times and the evils of alcohol took root in societies, wine—its health benefits and sociological impacts—became very controversial and spawned the anti-alcohol temperance movement in colonial America. In 1916, federal health authorities removed alcohol from the United States Pharmacopeia (USP), the authority responsible for implementing and managing standards for all prescription and over-the-counter medicines as well as health care products manufactured or sold in the United States. Then in 1920, the Volstead Act was enacted under the Eighteenth Amendment to the United States Constitution making the manufacture, sale, importation, and distribution of alcohol illegal which lasted until 1933 when the Twenty-first Amendment was ratified to repeal National Prohibition. During Prohibition, consumption of alcohol and homemade wine for personal use was still allowed though each state and often towns or counties were left to implement further control according to local needs. Wine for sacramental and medicinal uses was also exempt. In Canada, provinces had already started implementing prohibitory laws in 1917.

Much research on the health benefits of wine has been documented particularly since the nineteenth century. But the temperance movement had been strong and gained renewed momentum in the 1980s in advocating the evils of alcohol on public health. Mothers Against Drunk Driving (MADD), a now very influential organization, was first founded in 1980. Then during Ronald Reagan’s first presidential term in the 1980s, First Lady Nancy Reagan launched the “Just Say No” drug awareness campaign which naturally
 included alcoholic beverages. Senator James Strom Thurmond, whose daughter was killed by a drunk driver in 1993 and whose wife later became addicted to alcohol, was a long-time, staunch anti-alcohol advocate. He led the offensive responsible for implementing (in 1988) the now-familiar warning on labels of all wines sold in the U.S. The ATF (Bureau of Alcohol, Tobacco, Firearms and Explosives, now the Alcohol and Tobacco Tax and Trade Bureau, or TTB) text reads as follows:

GOVERNMENT WARNING: (1) According to the Surgeon General, women should not drink alcoholic beverages during pregnancy because of the risk of birth defects. (2) Consumption of alcoholic beverages impairs your ability to drive a car or operate machinery and may cause health problems.

But there was a major turnabout in 1991 when French scientist Dr. Serge Renaud made public his theory of the French Paradox which observed that the French suffer a relatively low incidence of coronary heart diseases (CHD), which is the major cause of death in industrialized countries, despite having a diet relatively rich in saturated fats found in, for example, eggs, dairy products and particularly cheese, and meat. Renaud’s work catapulted sales of red wine in the U.S. and a renewed interest in the health benefits of wine when CBS aired its *French Paradox* TV segment on *60 Minutes* that same year. The French Paradox, the countless epidemiological studies and laboratory studies and experiments, such as those by renowned Kaiser-Permanente cardiologist Dr. Arthur Klatsky make a strong case in asserting the J- or U-shaped relationships between the consumption of alcohol and mortality rate. More specifically, these have demonstrated that moderate alcohol consumption resulted in a lower mortality rate compared to abstainers and teetotalers or heavy alcohol drinkers. As well, moderate consumption has also been linked to a lower morbidity (disease) rate.
Moderate consumption is generally defined to represent 14 g of pure alcohol (ethanol) per day which can be obtained from 148 mL (5 fl oz) of twelve-percent-alcohol wine—careful with that “two glasses a day” guideline—or from 355 mL (12 fl oz) of five-percent-alcohol beer or from 44 mL (1½ fl oz) of forty-percent-alcohol spirit. And to enjoy and maximize the health benefits of moderate drinking, consumption must be daily and not averaged out by, for example, drinking seven times the recommended amount at one Saturday-evening party, and should be part of a balanced diet and healthy lifestyle including regular exercise.

As of 1999, wine destined for the U.S. market could then be labeled by TTB approval with a directional health-related statement directing consumers “to consult [their] family doctor about the health benefits of wine consumption” or to request the U.S. Department of Health and Human Services’ (HHS) and Department of Agriculture’s (USDA) published Dietary Guidelines for Americans “to learn the health effects of wine consumption.” But Senator Thurmond and temperance advocates such as the Center for Science in the Public Interest (CSPI) and MADD struck again and effectively forced the TTB in 2003 to defeat directional statements on labels on the grounds that these were inherently misleading and confusing and gave the impression that the government endorsed the health benefits of alcohol consumption which encouraged consumers to imbibe further. After all, the whole premise of alcohol control is that wine as well as beer and distilled spirits have been considered intoxicating beverages and not medicines.

The wine industry with the support of such trade organizations as the Wine Institute and the American Vintners Association (AVA) lobbied the federal agencies for more substantive health-related claims and reached a compromise of sort. Henceforth, under the authority of the Federal Alcohol Administration Act (FAA Act), the new TTB regulations stipulated in part that:
A specific health claim on a label or in an advertisement is considered misleading unless the claim is truthful and adequately substantiated by scientific evidence; properly detailed and qualified with respect to the categories of individuals to whom the claim applies; adequately discloses the health risks associated with both moderate and heavier levels of alcohol consumption; and outlines the categories of individuals for whom any levels of alcohol consumption may cause health risks.

Such requirements have made it almost impossible to obtain approval to include health claims, directional or substantive, on labels or in advertisements particularly that claims must contain a disclaimer “advising consumers that the statement should not encourage consumption of alcohol for health reasons ...” According to Richard Mendelson in *From Darling to Demon: A Legal History of Wine in America*, not a single health claim has been approved by the TTB since the regulation came into effect.

But there is hope. There has been vast progress in the last decade on the health benefits of moderate wine consumption. Though we—except for anti-alcohol advocates—have been thirsty for more good news on the role of wine on our health, research is nonetheless far from conclusive given the often contradictory findings and the breadth of malaises, illnesses and diseases on which wine is believed to have effects. The list ranges from heart diseases, strokes, cancer, dementia, including Alzheimer’s disease, type 2 diabetes, to arthritis and osteoporosis, and yes, even erectile dysfunction just to name a few. But a great deal of focus has naturally been on cardiovascular and neurodegenerative diseases.

In this section we will examine the science of the complex interactions between wine and health that are so near and dear to our hearts—literally.
Late 19th century ad in *The Cosmopolitan* extolling the virtues of *Vin Mariani*.

Many believe Champagne, oysters and chocolate to be aphrodisiacs.
Wine Frauds

The lure of easy money has not escaped the wine world where turning wine into profits is an elusive goal. There is an adage in the industry that says, “To make a small fortune in the wine business, you must start with a big fortune.” How true!

And so it is that unscrupulous “business” people resort to adulteration and other tricks to increase sales and generate more profits. There have been many attempts to “cut” (dilute) wine with water to increase output, a practice known as mouillage in French, to add flavorings or even toxic substances to increase mouthfeel, aromas or “quality,” or to use grape varieties of lesser quality instead of a premium variety declared on the label. In a scandal unearthed in 2008, E.&J. Gallo Winery had purchased more than thirteen million liters (3.5 million gallons) of “Pinot Noir” for their Red Bicyclette label from a Languedoc (France) wine merchant. French authorities convicted the cheaters with what amounted to a slap on the hand given the magnitude of the scam.

The high-end wine market has not been spared. So-called collector wines, highly sought for their high resale value, not for drinking pleasure, can fetch dizzying prices at auctions. In the heyday of the tech boom, the fine wine market grew at an unprecedented pace particularly in non-traditional Asian markets. These factors
combined to spawn a counterfeit industry. There were those who bottled cheap wine under the guise of a premium label and some who even forged labels. It was big business. It was so big in fact, that auction houses and collectors had to go through great lengths to authenticate the origin—or what is called *provenance* in winespeak—of highly praised bottles. Great strides have been made in analytical and laboratory methods to help establish provenance and authenticity, some of which are routinely used by regulatory bodies to control wine production and sales in their appellations. Protecting appellations is serious business.

Consider the latest black eye suffered by the Italian wine industry and the scandal involving premium Brunello wines from the 2003 to 2007 vintages from a handful of top estates in the DOCG (*Denominazione di Origine Controllata e Garantita*) appellation of Montalcino in Tuscany. DOCG regulations stipulate that Brunello di Montalcino and Rosso di Montalcino wines be produced strictly from one hundred percent Sangiovese grapes. Those estates’ Brunellos and Rossos were found to contravene this regulation as they contained other varieties. Whole productions were impounded until the investigation would complete or were simply declassified to a lower appellation that allows other varieties to be blended though these would sell at much lower prices.

Here, we review some specific cases of fraudulence, some of which became international public-relations nightmares for those trying to protect their long-established image of world-class wine producers and the role wine science played in the ensuing investigations.
So what does scientific research and development have in store for the wine industry? What can we expect to see in the next decade or two, or more?

First and foremost, we can expect medical researchers to zero in on the benefits of red wine consumptions by establishing an unequivocal cause-and-effect relationship between wine constituents and health benefits. Hopefully, this will encourage the population to incorporate wine as part of everyday meals and a healthier lifestyle and that wine becomes accepted as a food. That means that the nutrition and health czars governing public policies develop more informative guidelines to allow wine producers to state nutritional facts and make substantive health claims on labels. Surely it will be a tough balancing act with social responsibility tipping the scale heavily. But the long-term health benefits of responsible, moderate drinking will surely reduce the existing heavy burden on our health care systems.

Secondly, advancements in the science of enology will help winemakers better understand the chemistry of wine and what makes a good wine so that we can implement better viticultural and wine-making methods. The primary objectives of good winemaking are to make better and better wines and reduce the occurrence of faults. Unfortunately, some of these changes enabled by science will rub
1
1,6-trimethyl-1,2-dihydronaphthalene (TDN), 43
1-octen-3-one, 52

2
2,3-butanedione, 64, 73. See also diacetyl
2,4-hexadienoic acid, 110
2,4,6-trichloroanisole (TCA), 101, 103, 176
2,6,10,10-tetramethyl-1-oxaspirol[4.5]dec-6-ene-2,8-diol, 43
2-aminobenzoic acid methyl ester, 189
2-isopropyl-3-methoxypyrazine (IPMP), 118
2-methyl-1,3-butadiene, 43

3
3,5,4’-trihydroxystilbene, 161. See also resveratrol
3,7-dimethyl-2,6-dien-1-ol, 110
3-isobutyl-2-methoxypyrazine (IBMP), 118
3-methylbutyric acid, 107

4
4EG, 107–109
4EP, 107–109
4-ethylguaiacol (4EG), 107–109
4-ethylphenol (4EP), 107–109
4-mercapto-4-methylpentan-2-one, 40
4-methylguaiacol, 40–41, 176–177

A
α-amino acids, 180
Acacia, 30
acetaldehyde, 25, 98, 100, 113, 116, 169, 187
acetic acid, 82, 98, 112–113, 169
bacteria, 98, 113. See also Acetobacter
Acetobacter, 65. See also bacteria: acetic acid
acid, 21
2,4-hexadienoic, 110
3-methylbutyric, 107
α-amino, 180
acetic, 82, 98, 112–113, 169
amino, 21. See also amino acids
ascorbic, 47
calftaric, 99
carbamic, 180
carbolic, 109
carbonic, 174–175
carboxylic, 112
dehydroascorbic, 47
deoxyribonucleic acid. See DNA
dicarboxylic, 185
dicarboxylic tartaric, 105
dihydroxy succinic, 105
egallic, 160–162
ethanoic, 112
ferulic, 109
formic, 186
gallic, 160–161
glutamic, 121
glutathione–hydrocinnamic, 99
glycolic, 185
glyoxylic, 185
hydrofluoric, 175
hydroxyacetic, 185
hydroxybenzoic, 160
hydroxycinnamic, 109, 160
isovaleric, 107
lactic, 64, 78, 109, 167
malic, 53, 64, 66–67, 78, 82, 167
metatartaric, 30, 106–107
methanecarboxylic, 112
oxalic, 101, 185
pantothenic, 126
p-coumaric, 109
pyruvic, 64
sorbic, 110
succinic, 82
sulfuric, 169, 174
tartaric, 66–67, 82, 105–107
acidity, 34, 44, 64, 66–67, 74, 78, 121, 122–123, 129
total, 82
volatile, 62, 82, 112, 176
acidosis, 185
acid rain, 174–175
additives, 16, 40. See also fining agents. See also adulteration
ADH, 169
adipate, 171
adulteration, 187–190
advective freeze, 58
aeration-oxidation, 25
aerosols, 134
aging
barrel, 73–74, 84
lees, on the, 73, 86
wine, 44, 149–154
agriculture. See viticulture
air pollution, 174–176
ALAD, 175
alambicco, 94
albumin, 27–28
Alcoa, 104
concentration, 40
dehydrogenase (ADH), 169
higher, 94
isoamyl, 94
isobutyl, 94
methyl, 94, 186
potential, 22
wood, 186
Alcohol and Tobacco Tax and Trade Bureau (TTB), 157, 158
alcoholic fermentation. See fermentation: alcoholic
alcoholism, 160
alcohols, 21, 41
dihydroxy, 185
diols, 185
aldehyde
dehydrogenase (ALDH), 169
dehydrogenase-2 (ALDH2), 160
aldehydes, 21, 186–187
ALDH, 169
ALDH2, 160
alginites, 29
Alicante Bouschet, 148
alkanes, 176
allergies, 166–168
Alsace, 74
Alvaro Palacios, 147
Alzheimer’s disease, 159
amelioration, 62, 182
American Vintners Association (AVA), 158
amine, 21, 108
biogenic. See biogenic amines
INDEX

oxidases, 167
arginine, 109, 180
citulline, 180
cysteine, 114, 126
histidine, 167
lysine, 109
methionine, 114, 124, 126
tyrosine, 167
amontillado, 84
anthocyanins, 41–42, 135, 162, 188–189
delphinidin, 162
malvidin, 162
anthropogenic phenomenon, 55–57, 174
anti-alcohol movement. See temperance movement. See Prohibition
antifreeze, 184–185
antihistamine, 167
antimony, 172–173
oxide, 172–173
trioxide. See antimony oxide
antioxidant, 44, 47, 65, 162–163
Antique Wine Company, 193–194
AO, 25
aphrodisiacs, 178–179
A×R1, 50
arabinose, 29
Aramon, 50
Aramon Rupestris #1 (A×R1), 50
arginine, 109, 180
argon, 127
aromas, 40–41
apple, 40
asparagus, 116, 118
Band-Aid, 107
barnyard, 107–109
bell pepper, 40, 118
black pepper, 40
burnt rubber, 108–109, 114–115
butter, 40, 64, 73, 109
cat urine, 40
cheesy, 64
citrus, 40
corked, 101, 103, 176
decayed meat, 108–109
deary, 52
floral, 40
garlic, 98, 114
geranium, 52, 110
herbaceous, 118
honey, 40
horse sweat, 109
kerosene, 42–43
medicinal, 107
moldy, 101
mousey, 109
musty, 101
nutty, 64, 73, 84
oak, 73–74
onion, 98, 114
passion fruit, 40
peanut, 116, 118
petrol, 42–43
rancid, 107
roses, 40
rotten cabbage, 114, 124, 126
rotten eggs, 114–115, 126
smoke taint, 176
smoky, 40
spices, 40
sweaty, 107
tobacco, 40
wet dog, 126
yeasty, 74, 84
aromatic compounds, 21, 40–41
bound, 40
free, 40
non-volatile, 40
volatile, 40
wine myths, facts & snobberies

Arrhenius, Svante, 55
artherosclerosis, 164
arthritis, 159
ascorbic acid, 47
Aspergillus
 carbonarius, 181
 ochraceus, 181
assemblage, 85
asthma, 167–168
Asti Spumante, 87
astringency, 34, 35, 67, 121, 129, 162
Aszú. See Tokaji Aszú
ATF, 157
attherosclerosis, 163–164
atmosphere, 174
atmospheric pressure, 148
Australia, 76
Austria, 184–185
autoysis, 86
AVA, 158

B
β-damescenone, 40
BAC, 169, 187
Baco Noir, 58
bacteria, 65
 acetic acid, 98, 113. See also Acetobacter
 lactic acid, 64–65, 78, 108, 110, 167, 180
 spoilage, 64–65
 balance, 33–34
balthazar (of Champagne), 139
barrel
 aging, 73–74, 84
 fermentation, 73–74
barrels. See oak barrels
Barrett, Jim, 99
Beaujolais, 76–77, 130
 Nouveau, 76–79, 130
beer, 125, 160, 168
gas, 127
beetles. See multicolored Asian lady beetle (MALB)
benzene ring, 41, 152
Benziger Family Winery, 147
bidule, 86
biocides, 144
biodynamic winemaking, 141–147
bioenic amines, 65, 108–109, 167–168
 butanediamine, 108–109
 cadaverine, 108–109
 histamine, 167
 pentamethylenediamine, 109
 putrescine, 108–109
 tyramine, 167
bird bangers, 53–54
bisphenol-A, 171
bisulfite, 24–25, 115
bitartrate, 67
bitterness, 121, 122–123, 129
blanc de blancs, 87
blanc de noirs, 87
Blood Alcohol Concentration (BAC), 169, 187
blush. See wine: rosé
body, 45, 121
Bordeaux, 132–133
Botryotinia fuckeliana, 79
botrytis, 42, 79–80
Botrytis cinerea, 79–80
bottle
 shock, 100
 sickness, 100
 variation, 103–104
Bottle Shock (the movie), 99
bottles, 125–126. See also Champagne: bottle sizes
 PET, 171, 173
bouchonné, 101
INDEX

BPA, 171
brandy, 93
Branne-Mouton, Château, 193
breast cancer, 160
Breathalyzer, 168–170, 187
breathe. See decanting
Brett. See Brettanomyces
Brettanomyces
 bruxellensis, 65, 107–109, 176
Brix, 187
Brock University, 118–119
browning, 30, 62, 99, 152
Brunello, 183
bubble nucleation, 91
bubbles, 90–93, 128, 134
bubbly. See Champagne. See wine:
 sparkling
Bureau of Alcohol, Tobacco,
 Firearms and Explosives
 (ATF), 157
Burgundy, 20, 76, 87, 132–133
butanediamine, 108–109
Butzke, Christian E., 103
C
 Cabernet Franc, 32, 76, 83, 130,
 133
 Cabernet Sauvignon, 15, 32, 76,
 79, 118, 123, 130, 133
cadaverine, 108
caricic acid, 99
CaGBC (Canada Green Building
 Council), 145
calcium, 21, 105, 185
carbonate, 66–67
carbonate, 66–67
malate, 67
oxalate, 185
tartrate, 66–67, 105
tartrate malate, 67
California, 58, 61
California Association of
Winegrowers (CAWG), 145
California Sustainable
 Winegrowing Alliance (CSWA), 145
carbohydrates, 23, 165–166
carbon
dating, 187, 193
dioxide, 16, 55, 64, 77–78, 85,
 90–93, 127, 148, 169, 173–175
disulfide, 49
carbonation, 88
carbonic
 acid, 174–175
 maceration, 77–79, 163
 carboxylic acids, 112
carbos, 170–173
carcinogens, 180–181
cardiocvascular diseases. See heart
diseases
 Carignan, 79
carotenoids, 43
casein, 29
catechin, 162
Cat’s Pee on a Gooseberry Bush, 40
cava, 86
CAWG (California Association of
 Winegrape Growers), 145
CCOVI, 118
cellaring. See aging: wine
cellulose, 29, 39, 107
Center for Science in the Public

213
WINE MYTHS, FACTS & SNOBBERIES

Interest (CSPI), 158
Centre national de la recherche scientifique (CNRS), 193–194
cesium dating, 187, 193
CFCs, 174–176
Chablis, 74, 126
Chaboussou, Francis, 142, 144
chalk, 66–67
Champagne, 57, 85–88, 90–93,
123, 133–134, 136–139,
178–179. See also wine:
sparkling
bottle sizes, 139
styles, 86
Chaptal, Antoine-Claude, 22
chaptalization, 22, 23
Chardonnay, 15, 45, 64, 73–75, 76,
87, 123, 124, 130, 133
Charmat process, 87
Château Montelena, 99, 102
Château
Branne-Mouton, 193
Haut-Brion, 100
Laffite, 190–194
Lafite, 190
Lafite-Rothschild, 190
Mouton Rothschild, 33, 36,
100, 193
Montrose, 100
Yquem, d’, 79, 126–127, 190
CHD. See heart diseases
Chile, 48
chlorine, 101, 103, 176
chlorofluorocarbons (CFCs),
174–176
chlorosis, 144
chocolate, 162, 178–179
cholesterol, 164
cholinesterase, 117
chromatography,
gas, 184, 187
high performance liquid,
187–188
chromium sulfate, 169
chrysanthemum, 117
cis-rose oxide, 40
citrulline, 180
clarification, 26. See also
filtration. See also fining
classical method. See méthode
champenoise
Clefs du Vin®, 151
cclimate change, 55–57, 174
climatology, 145
clones, 15
Clos de la Coulée de Serrant, 146
cloudiness, 26, 29, 30, 111–112,
147–149
CNRS, 193–194
CO₂. See carbon dioxide
Coca-Cola, 177–178
cocaethylene, 177
cocaine, 177
Coccinellidae, 116
occineilds, 118
Cognac, 93
cognitive developmental
deficiencies, 160
cold soak
maceration, 42
post-fermentation, 42
cold stabilization, 16, 30, 32, 66,
105–107
collagens, 27–28
colloids, 27, 30, 91
color. See anthocyanins. See
browning. See maceration.
See oxidation
Concord, 79, 189
Condrieu, 76
cconsumption
moderate, 157–158, 160, 164,
167
Cool Climate Oenology and
Viticulture Institute
INDEX

(CCOVI), 118
cooling jacket, 106
copper, 153–154
 sulfate, 52, 115
 sulfide, 115
Corder, Roger, 162
corked wine, 101. See also TCA
corks, 101, 103–104. See also
crewwcaps. See also glass
closures
coronary heart diseases (CHD).
 See heart diseases
Côte Rôtie, 76
counterfining, 111–112
country wines, 15
cover crops, 141–142
cow horns, 143, 146
cream of tartar, 105. See tartrates
cream Sherry, 84
cross-flow filtration, 62
 crushing, 15, 17–19
cryoextraction, 83
CSPI, 158
CSWA (California Sustainable
 Winegrowing Alliance), 145
cultivar fingerprinting, 190
cultivars, 15. See also Vitis
cuve close, 87
cuvée, 85
cynarin, 124
cypermethrin, 117, 119
cysteine, 114, 126

D
 Daktulosphaira vitifoliae, 48
 DAP, 180
 DBP, 171–172
decanting, 131–132
decarboxylation, 108, 110
dégorgement, 86
 DEHA, 171–172
 DEHP, 171–172
dehydroascorbic acid, 47
 Dekkera bruxellensis. See
 Brettanomyces bruxellensis
delestage, 67–69
delphinidin, 162
delta-aminolevulinic acid
dehydratase (ALAD), 175
dementia, 159, 163
 Demeter, 146
 Denominazione di Origine
 Controllata e Garantita
 (DOCG), 183
deoxyribonucleic acid. See DNA
 Department of Agriculture
 (USDA), 166
 Department of Health and
 Human Services (HHS), 158
destemming, 15
dew point temperature, 58
dextrose, 23
di(2-ethylhexyl) adipate (DEHA),
 171–172
di(2-ethylhexyl) phthalate
 (DEHP), 171–172
diabetes, 159, 163, 171
 diacetyl, 40, 64, 73
 dialysis, 88, 90
 diaminonitrobenzene, 180
 dibutyl phthalate (DBP), 171–172
dicarboxylic
 acid, 185
tartaric acid, 105
diethylene glycol, 185
 Diffenbaugh, Noah, 56
diglycoside, 189
dihydroxy alcohols, 185
dihydroxyxysuccinic acid, 105
dimethyl
 disulfide (DMDS), 126
 sulfide (DMS), 126
diols, 185
diphenols, 99
disaccharide, 23
distillation, 93–94
fractional, 94
vacuum, 62
disulfides, 113, 114, 124. See also hydrogen sulfide
DMDS, 126
DMS, 126
DNA, 163, 168, 190, 196
profilimg, 190
DOCG, 183
Domaine Leroy, 146
Domaine Romanée-Conti (DRC), 146
Domaine Zind Humbrecht, 146
Dom Pérignon, 85–86, 92
dosage, 86
double-salt precipitation, 66–67
downy mildew, 51–52
DRC, 146
dryness, 78
Duboeuf, Georges, 77

e E
EC-1118, 20
École d’agriculture de Montpellier, 49
egallic acid, 160–162
egg whites, 27–28, 65
Eighteenth Amendment (to the United States Constitution), 156
Éiswein, 57, 80
E.&J. Gallo Winery, 182
electromagnetic spectrum, 125–126
ellagitannins, 35, 160, 162
encapsulated yeast, 63
endothelium, 161
energy management system, 145
enology, 14, 15
enzymes
alcohol dehydrogenase (ADH), 169
aldehyde dehydrogenase (ALDH), 169
aldehyde dehydrogenase-2 (ALDH2), 160
amine oxidases, 167
browning, 99
cholinesterase, 117
delta-aminolevulinic acid dehydratase (ALAD), 175
glycosidase, 40
grape, 78
invertase, 23
lacasse, 42
lysozyme, 65
maceration, 69
methylesterase, 186
plasmin, 160
polyphenol oxidase, 99
zymase, 15
epicatechin, 162
erectile dysfunction, 159
Erysiphe necator, 52
Erythroxylum coca, 177
esterification, 109
esters, 21, 68, 189
Eszencia, 79–80
ethane, 176
ethanoic acid, 112
ethyl alcohol. See ethanol
carbamate, 180–181
lactate, 108–109
tetrahydropyridine, 108–109
ethylene glycol, 185
extreme winemaking, 81
INDEX

F
FAS, 160
fats, 163–164
Federal Alcohol Administration Act, 158
fermentation, 15, 162
alcoholic, 13, 15–16, 41–42, 45, 52, 63, 73, 78, 82, 85, 168, 173, 176
barrel, 73–74
bottle, 85
carbonic maceration, by, 77–79, 163
delestage, 67–69
intracellular, 77–78
malolactic, 63–65, 66, 73, 78, 108–109, 110, 167, 180
spontaneous, 19–20
stuck, 20
tank, 87
ferric casse, 30, 47
fertilizers, 34, 141
phosphorous, 175
ferulic acid, 109
fetal alcohol syndrome (FAS), 160
filtration, 26, 70
cross-flow, 62
membrane, 108
sterile, 108, 110
Finger Lakes, 61
fining, 26
agents, 27–30, 161
Fino Sherry, 84
Flanzy, Michel, 77
flavan-3-ols. See flavonols
flavanols, 162
catechin, 162
epicatechin, 162
procyanidins, 162–164, 166
flavonoids, 30, 160, 162, 189
flavonols, 162
quercetin, 162
flavor, 40–41. See also aromas
floculation, 26
flor, 84
fluorine, 176
Foëx, Gustave, 49
food pairing, 121–124
Forbes, Malcolm, 191
formaldehyde, 186
formic acid, 186
aldehyde, 186
Fourier, Jean-Baptiste Joseph, 55
Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS), 134
Franck, Thomas, 153
frauds, 182–194
free radicals, 163–164
free-run wine, 78
freeze, advective, 58
radiational, 60–61
French Paradox, 157, 160–161
French Wine Coca, 177
Friuli, 76
frost, 58–61
fructose, 23, 165
fruit wines, 15
FT-ICR-MS, 134
functional (chemical) groups, carbamoyl, 180
carbonyl, 28
geranyl, 110
hydroxyl, 28
methoxyl, 186
methyl, 186
non-carbohydrate, 40
sulphydryl, 98, 114
fungicides, 52, 141
Furmint, 80
fusel oils, 94
gallic acid, 160–161
gallotannins, 35, 160
Gamay, 79, 130
gas chromatography (GC), 184, 187
Gayon, Léonard-Ulysse, 63
GC, 184, 187
GC-MS, 184
gelatin, 27–29
genes
 survival, 161
geraniol, 110
Germany, 57, 80–81
gesamtkunstwerk
Gewürztraminer, 83, 111, 123, 129
glass
 closures, 102, 104
 color, 125–126
glasses, 132–133
global warming, 55–57, 174
glucose, 23, 29, 64, 161, 165, 173, 189
glutamates, 121
 glutamic acid, 121
 glutathione, 99
 glutathione–hydroxycinnamic acid, 99
glycerine. See glycerol
glycerol, 45
glycol,
 diethylene, 185
 ethylene, 185
 propylene, 46, 106
glycolic acid, 185
glycosides, 30
glycosidase, 40
glycocolic acid, 185
wine and, 142, 155–181
heart
 attack, 160, 164, 178
 diseases, 157, 159, 163–164, 171
heat stability test, 112
Heineken, 92–93
helicopters, 61
hemicellulose, 39
hemipolyactide, 106
hemoglobin, 175
INDEX

Henry's Law, 91, 92
herbicides, 141
Hermitage, 76
hexadienol, 110
HHS, 158
Hidden Bench Vineyards and
 Winery, 18
high-density lipoprotein (HDL), 164
higher alcohols, 94
high performance liquid
 chromatography (HPLC), 187–188
Himnusz, 80
Hippocrates, 155
histamine, 167
histidine, 167
Howitz, Konrad, 161
HPLC, 187–188
Humbrecht, Domaine Zind, 146
Hungary, 79–80
hybrid, 49, 57, 189
hydrocarbons, 175
hydrofluoric acid, 175
hydrogen
 fluoride, 175
 peroxide, 47, 103, 115–116,
 135–136
 sulfide, 114–115, 126
hydroxyacetic acid, 185
hydroxybenzoic acids, 160
hydroxypropionic acids, 109, 160
hyphenated techniques, 188
hypolipemic, 163

I
IBMP, 118
ice wine, 80–83
Icewine, 57, 75, 80–83, 123, 133
INAO, 46
Inniskillin Wines, 81, 133
INRA, 142
insecticides, 49, 117–119, 141, 144
_Institut National des Appellations
d'Origines (INAO), 46
_Institut National des Recherches
Agricultures (INRA), 142
Intergovernmental Panel on
Climate Change (IPCC), 55
International System of Units
(SI), 10
International Union of Pure and
Applied Chemistry (IUPAC), 11
inversion, 60
invertase, 23
IPCC, 55
IPMP, 118
IR, 187
iron, 30, 47, 175
irrigation, 54, 57
isinglass, 29
isoamyl, 94
isobutyl, 94
isohumulones, 125
isomers, 23
isoprene, 43
isoprenoids, 43
isotope, 188, 192–193
ratios (IR), 187
isovaleric acid, 107
IUPAC, 11

J
Jackson, Ronald S., 46
Jackson-Triggs Vintners, 36
Japanese ladybug, 116
Jefferson, Thomas, 190–194
Jerez de la Frontera, 84
Jeroboam (of Champagne), 139
Joly, Nicolas, 145–147
Judgment of Paris, 99
wine myths, facts & snobberies

K
Kaiser, Karl, 81
kerosene, 42–43
kidney stones, 185
kieselsol, 27–28
King Louis XV, 133
kits, 28–29, 30–32, 88
Klatsky, Arthur, Dr., 157
KMS, 24. See also potassium: metabisulfite
Koch, William, 193

L
L-3-keto-threo-hexuronic acid lactone, 47
LAB. See bacteria: lactic acid labels,
 government warnings on, 157–159, 166
 holographs in, 196
 radio-frequency identification (RFID) in, 196
lacasse, 42
lactic acid, 64, 78, 109, 167
lactic acid bacteria, 64–65, 78, 108, 110, 167, 180
Lactobacillus, 64–65
lactose, 23
ladybug, 116
Lafite, Château, 190
Lafite-Rothschild, Château, 190
Lafitte, 190–194
lagares, 17
Lalvin EC-1118, 20
Languedoc-Roussillon, 77
late-bottled vintage (LBV) Port, 84
LBV, 84
LDL, 164
lead, 175
 poisoning, 175
Leadership in Energy and Environmental Design (LEED), 145
LEED, 145
lees, 73, 86
legs, 45–46
Lembeck, Bill, 90–93
Leroy,
 Domaine, 146
 Lalou Bize, 146
levulose, 23
Liger-Belair, Gérard, 92–93, 134
lignins, 39, 41, 109
light. See ultraviolet light
light-strike reaction, 125–126
linalool, 40
Lindeman, Henry J., Dr., 156
liqueur de tirage, 85
liqueur d'expédition, 86
longevity, 161
Loubère, Leo, 19
low-density lipoprotein (LDL), 164
Lutzenberger, José, 142, 144
lysine, 109
lysozyme, 65

M
maceration, 16, 42, 44, 162, 176
 carbonic, 77–79, 163
 cold soak, 42
 enzymes, 69
MADD, 156, 158
Madiran, 163
magnetic
 field, 149–153
 resonance imaging (MRI), 150
magnum (of Champagne), 139
Maillard reaction, 62
malathion, 117, 119
MALB, 116–119
INDEX

Maleta Winery, 42
malic acid, 53, 64, 66–67, 78, 82, 167
Malivoire Wine Company, 69
malolactic fermentation (MLF), 63–65, 66, 73, 78, 108–109, 110, 167, 180
malvidin, 162
manzanilla, 84
Mariani, Angelo, 177
Marie Antoinette, 133
Marilyn Monroe, 92
Maroon, Joseph, Dr., 161
mass spectrometry (MS), 184, 187, 193, 196
mast cells, 167–168
Master of Wine (MW), 129
mastocytes, 167–168
maturation. See aging: wine
megastigmatrienone, 40
Mendelson, Richard, 159
mercaptans. See thiols. See also hydrogen sulfide
Merlot, 15, 32, 76, 83
mesoclimate, 54
metatartaric acid, 30, 106–107
meteorology, 145
methanal, 186
methane, 55, 176
methanecarboxylic acid, 112
methanethiol, 124
methanol, 94, 186
methionine, 114, 124, 126
méthode
champenoise, 85–88
classique, 85–88
traditionelle, 85–88
methoxypyrazines, 40, 118–119
methuselah (of Champagne), 139
methyl
alcohol, 94, 186
anthranilate, 189
mercapan. See methanethiol
methylesterase, 186
methylphosphonofluoridic acid
1-methylethyl ester (Sarin), 49
microbial spoilage. See spoilage: microbial
microbullage, 35. See also micro-oxygenation
microclimate, 54
micro-oxygenation, 35, 74
micro-sprayers, 61
migraines, 167
mildew,
dow, 51–52
powdery, 48, 51–52
Millton Vineyards, 147
minerals, 21
MLF. See malolactic fermentation
moderate consumption, 157–158, 160, 164, 167
Moët & Chandon, 85, 92–93
mold, 65, 101, 181. See also spoilage
Aspergillus, 181
grey, 79
noble rot, 79–80
Penicillium, 181
Plasmopara viticola, 52
TCA, 101, 103, 176
molybdenum, 169
Mondavi,
Michael, 133
Robert, 133
monoglycoside, 189
monosaccharide, 23, 165
monosodium glutamate (MSG), 121
Montalcino, 183
Montelena, Chateau, 99, 102
Montinore Estate, 143
Montrachet
wine, 132–133
yeast, 114
Montrose, Château, 100
moon, 141, 147–149, 151
moonshine, 93–94
Mothers Against Drunk Driving (MADD), 156, 158
mouillage, 62, 182
mouthfeel, 27–28, 30, 35, 64, 67, 182
Mouton Rothschild, Château, 33, 36, 100, 193
MS, 184, 187, 193, 196
MSG, 121
multicolored Asian lady beetle (MALB), 116–119
Muscadine, 161–162
Muscat, 129, 148
MW, 129
mycotoxin, 180–181
myocardial infarction. See heart diseases
N
nanofiltration, 62, 176
Napa Valley, 61
Napoleon Bonaparte, 22, 137
National Prohibition. See Prohibition
nebuchadnezzar (of Champagne), 139
netting, 54
neurodegenerative diseases. See Alzheimer’s disease. See cognitive developmental deficiencies. See dementia. See strokes
neurotoxin, 117, 175
Niagara, 57–61, 81, 116–117
nitric oxide, 161
nitrogen, 127, 174–175
dioxide, 175
oxide, 174–175
nitrous oxide, 55
noble rot, 79–80
nonflavonoids, 160
norisoprenoids, 43
Nossiter, Jonathan, 71
N-vinylpyrrolidone, 27
O
oak, 16, 35–39, 73, 101, 109
oak barrels, 16, 35–39, 73, 103, 107, 114, 121
American, 37–38
Canadian, 38
Eastern European, 38
French, 37–38
Hungarian, 38
Quercus, 38
toasting, 35, 37, 39, 41, 109
ochratoxin A, 180–181
Oenococcus oeni, 64–65
Oidium (powdery mildew), 48, 52
Old Farmer’s Almanac, The, 145
oligomeric proanthocyanidins (OPC). See procyanidins
oloroso, 84
Ontario, 189. See also Niagara
O,O-dimethyl phosphorothioate, 117
OPC. See procyanidins
Oporto, 83
optical comparator, 91–92
organic
wine, 27, 29, 141, 142, 168
winemaking, 141–147
organophosphate, 117
ortho-phthalate plasticizers, 171–172
osmosis, 62, 90, 135
reverse (RO), 61–63, 176
osmotic pressure, 20, 44, 81–82
osteoporosis, 159
INDEX

OTR, 104
oxalic acid, 101, 185
oxidative stress, 163–164
oxygen transfer rates (OTR), 104
oysters, 178–179
ozone, 55, 174–175
depletion, 55, 176

P
PA. See alcohol: potential
Palacios, Alvaro, 147
PANs, 175
pantothenic acid, 126
Parente, Matilde, MD, 163
Pasteur, Louis, 13
Paul, Harry, 17
PC, 171
protocatechuic acid, 109
PCR, 190
pectin, 186
Pediococcus, 64–65
Pemberton, John, 177
Penfold, Christopher R., Dr., 156
Penicillium, 181
pentamethylenediamine, 109
pentose, 29, 165
percarbonate, 135–136
perlage, 30
peroxycetyl nitrate, 175
peroxycyl nitrates (PAN), 175
pesticides, 144, 145, 174, 176
PET, 170–173
petrol, 42–43
Peynaud, Émile, 34, 63
phenolics, 41–42, 101, 109
phenols, 41–42, 44, 45, 67–69, 77–78, 100, 105–106, 152, 176
anthocyanins, 41–42
phenylthiocarbamide, 124
phosphorous, 175
phyloxera, 48–51, 144
Phylloxera
vastatrix, 48
vitifoliae, 48
phytoalexin, 161
Pickering, Gary, Dr., 118–119
Piedmont, 186
Pinot Grigio, 74, 76, 124
Pinot Gris, 74, 76, 124
Pinot Meunier, 87
Pinot Noir, 15, 20, 56, 74, 78, 87, 123, 130, 133, 176, 189
piperidine, 109
Planchon, Jules-Emile, 50
plasmin, 160
plasminogen, 160
Plasmopara viticola, 52
plasticizers, 171
platelet, 164
pollution, 174–176
carbonated (PC), 171
carbonated (PET), 170–173
polymerase chain reaction (PCR), 190
carbonated oxidase, 99
carbonated, 21, 25, 44, 108, 142, 160–164
carbonated, 160
polysaccharides, 27, 29
carbonated chloride (PVC), 171
carbonatedpolymer (PVPP), 27, 30, 161
carbonatedpseudoperoxidase (PVP), 27
pomace, 93
Pompadour, Madame de, 133
Pope Leo XIII, 177
Port, 83–84, 89, 123, 131
styles, 84, 125
Portugal, 17, 64, 83
potassium, 21, 105
 acid tartrate, 105
 bicarbonate, 66
 bitartrate, 66, 82, 105–106
 chloride, 28
 dichromate, 169
 hydrogen tartrate, 105
 metabisulfite, 24, 103
 sorbate, 110
 sulfocarbonate, 49
 tartrate, 66
 xanthate, 49
potential alcohol, 22
powdery mildew, 48, 51–52
Prädiaks, 79
preservatives, 16
pressing, 15
press-run wine, 78
pressure
 atmospheric, 148
 osmotic, 20, 44, 81–82
prise de mousse, 85
Private Reserve™, 127
proanthocyanidins. See procyanidins
procyanidins, 162–164, 166
Prohibition, 156, 177
propylene glycol, 46, 106
proteins, 27–29, 105, 111–112, 124, 163–164, 175
protein stability, 65, 111–112
provenance, 183, 191
pump-over, 68
putrescine, 108–109
PVC, 171
PVP, 27
PVPP, 27, 30, 161
pyrazine, 118
pyrethroid, 117
pyrethrum, 117
pyrine, 109
pyruvic acid, 64
Q
quarter bottle (of Champagne), 139
quercetin, 162
Quercus,
 alba, 38
 pendunculata, 38
 robur, 38
 sessilis, 38
 suber, 101
R
rack-and-return, 67–69
racking, 68, 115
radiation, 125–126
radiational freeze, 60–61
Radio-Frequency Identification (RFID), 196
Reagan, First Lady Nancy, 156
Red Bicyclette, 182
redox
 pair, 98
 potential, 98, 153
reducing sugars, 165
reduction, 97–100, 153–154
reflex bleeding, 118
rehoboam (of Champagne), 139
remuage, 86–87
Renaud, Serge, Dr., 157
residual sugar, 23. See sugar: residual
resveratrol, 142, 160–163
reverse osmosis (RO), 61–63, 176
RFID, 196
Rhône, 76
Ribéreau-Gayon
 Jean, 63
 Pascal, 63
riboflavin, 126
riddling, 86–87
Riedel
 Georg, 132–133
glasses, 132–133
Rieger, Ted, 21
Riesling, 15, 42–43, 66, 80, 83, 105, 123, 129
Riley, Charles Valentine, 50
RO, 61–63, 176
Robert Mondavi, 133
Robinson, Jancis, 129
Rodenstock, Hardy, 192–194
Romanée-Conti, Domaine, (DRC), 146
rootstock, 144
 AXR1, 50
 SO4, 50
rosé. See wine: rosé
roses, 51–52
rot, 33, 79–80
rotundone, 40
RS. See sugar: residual
ruby Port, 84
Rupestris, 50
S
sabering, 136–139
sabrèage, 137–139
saccharides, 23, 29–30, 165
Saccharomyces
 bayanus, 20, 63
cerevisiae, 15, 20, 23, 25, 52, 63
salmanazar (of Champagne), 139
saltiness, 121
Sangiovese, 183
Sarín, 49
Sauternes, 44, 45, 79–80, 123, 165
Sauvignon Blanc, 15, 40, 79, 80, 111, 118, 124, 129
Scheele, Carl Wilhelm, 105
Schramsberg Vineyards, 89
screwcaps, 101, 103–104
sediment. See decanting. See lees
seeds, 17, 19, 35, 68, 121, 162
Selection Oppenheim #4 (SO4), 50
selective inverted sink (SIS), 60
Sémillon, 80
sex, 164
Sherry, 83–84, 116, 187
 styles, 84
Shiraz, 74, 76
Shwartz, Mark, 56
SI, 10
silica gel, 28
silicon dioxide, 27
silver, 153–154
Simpsons, The, 184–185
Sinclair, David, Dr., 161
SIS, 60
skins. See grape skins
smell. See aromas
smog, 175
smoke taint, 176
snoring, 164
SO2, 24–25
 bound, 24–25
 free, 24–25
 molecular, 24–25
 total, 24–25
SO4, 50
sodium
 bentonite, 29. See also bentonite
carbonate, 135
carbonate peroxide, 135–136
carbonate peroxyhydrate, 135–136
chloride, 28
percarbonate, 135–136
solar science, 145
solera, 84
sorbate. See potassium: sorbate
sorbic acid, 110
Southbrook Vineyards, 147
sour-bunch rot, 79
sour wine, 112
Spain, 84
sparking wine. See wine: sparkling
Sparkolloid, 27, 29
spinning-cone column, 61–63
spirits, 160, 168
spoilage, 20, 21
lactic, 64–65, 109
microbial, 16, 24–25, 26, 64–65, 142
spontaneous fermentation, 19–20
stabilization, 15
cold, 16, 30, 32, 66, 105–107
protein, 111–112
Stag’s Leap Wine Cellars, 99–100
stains, 134–136
Stanford University, 56
Steiner, Rudolf, 145, 147–148
stems, 15, 17, 35, 121, 162
stillbenoids, 160
strokes, 159
stuck fermentation, 20
succinic acid, 82
sucrose, 23, 165
sugar, 15, 21, 22, 23, 44
arabinose, 29
cellulose, 29, 39, 107
dextrose, 23
fructose, 23, 165
glucose, 23, 29, 64, 161, 165, 173, 189
lactose, 23
levulose, 23
pentose, 29, 165
reducing, 165
residual, 23, 45, 74, 108, 166
sucrose, 23, 165
sugaring, 22. See also chaptalization
sulfate, 47, 116, 168
sulfide, 114–115, 124. See also hydrogen sulfide
sulfite, 16, 24–25, 47, 65, 98, 114–116, 142, 166–168. See also potassium metabisulfite. See also sulfur dioxide
sulfur, 24, 52, 98, 114–116, 124, 126, 174
bound, 24–25, 115–116
free, 24–25, 115–116
limits, 25
molecular, 24–25, 115
oxides, 174
total, 24–25
trioxide, 174
sulfuric acid, 169, 174
survival genes, 161
sustainable winemaking, 57, 141–147
sweetness, 121, 122–123, 129, 166, 184
Syrah, 74, 76
Système International d’Unités (SI), 10
T
TA, 82. See acidity: total
Tannat, 162–163
condensed, 162. See also procyanidins
INDEX

hydrolyzable, 160–161
tartaric acid, 66–67, 82, 105–107
tartrates, 67, 105–107
tartrate stabilization, 16, 30, 32, 66, 105–107
taste. See flavor
tawny Port, 84
Tawse Winery, 143
taxonomy, 11
TBA, 79
TCA, 101, 103, 176
TDN, 43
tea, 162
tears, 45–46
temperance movement, 156, 177
temperature
dew point, 58
inversion, 60
serving wine, 129–130
tere-phthalate, 172
terpenes, 43
terroir, 13, 147
tetraethyl lead, 175
tetraeterpenes, 43
Thénard
Baron Louis-Jacques, 49
Baron Paul, 49
thermal energy, 55, 60
thermodynamics, 55, 57–61
thermoluminescence, 192
thermovinification, 42
thiols, 21, 98, 113, 114–115, 124, 126
Thomas, Robert B., 145
Thompson Seedless, 148
Thurmond, Senator James Strom, 157–158, 166
tirage, 86
tissue Plasminogen Activator (tPA), 160
Tokaji Aszú, 79–80
total acidity, 82
tPA, 160
traditional method. See méthode champenoise
Trentino-Alto Adige, 76
trialcohol, 45
trichloroanisole. See 2,4,6-trichloroanisole
triglycerides, 164
tripeptide, 99
Trockenbeerenauslese (TBA), 79
trophobiosis, 142–143
TTB, 157, 158
turbidity, 148
turbido, 148
Twenty-first Amendment (to the United States Constitution), 156
tyramine, 167
tyrosine, 167

U
UC Davis, 99
ullage, 35, 191–192
ultrahigh-resolution mass spectrometry, 134
ultraviolet light, 125–126
umami, 121
Uncinula necator, 48, 52
UNEP, 55
United Nations Environment Programme (UNEP), 55
United States Constitution, 156
United States Pharmacopoeia (USP), 156
University of California at Davis, 99
urea, 180
urethane, 180
Uruguay, 163
USDA, 166
U.S. Department of Agriculture, 166
WINE MYTHS, FACTS & SNOBBERIES

U.S. Green Building Council (USGBC), 145
USGBC, 145
USP, 156
UV (UVA, UVB, UVC). See ultraviolet light

V
VA, 62, 82, 112, 176
vacuum distillation, 62
van Leeuwenhoek, Antoni, 13
varieties, cultivated. See cultivars
vasodilator, 161
vegan wine, 27, 29
Veneto, 76
véraison, 53
Vidal, 75, 81, 83
vinaccia, 93
vin aigre, 112
vin de glace, 83
viniculture, 10
vinifer. See Vitis vinifera
vin mousseux, 85. See wine: sparkling
Vin Mariani, 177, 179
Vino-Lok®, 102, 104
vino novello, 77
vintage Port, 84
Vintners Quality Alliance (VQA), 81, 189
vinyl, 171
vitamins, 21, 126
B12, 126
B12, 126
C, 47, 163
E, 163
viticulture
biodynamic, 141–147
organic, 141–147
sustainable, 57, 141–147

Vitis
berlandieri, 50
labrusca, 48, 57, 189
riparia, 50, 83
rotundifolia, 161–162
rupestris, 50
vinifera, 15, 48–50, 54–55, 57–58, 60, 83, 144, 162, 189
volatile acidity (VA), 62, 82, 112, 176
Volstead Act, 156
Vonn, Lindsey, 136–137
VQA, 81, 189

W
Wallace, Benjamin, 192–193
warming
global, 55–57
weight, 165–166
wildfires, 176
wildlife, 53–54
William Harvey Research Institute, 162
wind machines, 57–61
wine, 15, 21
adulteration, 187–190
aging, 44, 149–154
biodynamic, 141–147
blush. See wine: rosé
coca, 177
country, 15
dealcoholized, 166
diamonds, 105. See tartrates
dry, 23
frauds, 182–194
free-run, 78
fruit, 15
health, and, 142, 155–181
INDEX

ice, 20. See also Icewine
organice, 27, 29, 141, 142, 168
press-run, 78
rosé, 123, 163
sex, and, 164
sparkling, 20, 30, 85–88, 89, 90–93, 123, 130, 133–134
stains, 134–136
unfiltered, 26
vegan, 27, 29
Wine Institute, 145, 158
winemaking
 biodynamic, 141–147
 effects of the moon on, 141, 147–149, 151
 extreme, 81
 gravity-flow, 69–70
 organic, 141–147
 process, 15–17
 sustainable, 141–147
WMO, 55
wood alcohol, 186
Woods Institute for the Environment, 56
World Meteorological Organization (WMO), 55

X
Xenohormesis Hypothesis, 161
X rays, 125–126, 194

Y
yeast, 13, 15–16, 19–20, 23, 40
 Brettanomyces, 65, 107–109, 176
 encapsulated, 63
 flor, 84
 indigenous, 19–20
 Lalvin EC-1118, 20
 metabolism, 180
 Montrachet, 114

Z
 (Z)-1,5-octadien-3-one, 52
 Zanon, Lorenzo, 153
 zingerone, 40
 Ziraldo, Donald, 81, 133
 Zoecklein, Bruce, Dr., 67
 zymase, 15