Techniques in HOME WINEMAKING

The Comprehensive Guide to Making Château-Style Wines

Daniel Pambianchi

Véhicule Press
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>15</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>17</td>
</tr>
<tr>
<td>PREFACE</td>
<td>19</td>
</tr>
<tr>
<td>ABOUT UNITS OF MEASURES</td>
<td>25</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>27</td>
</tr>
<tr>
<td>1.1 WINEMAKING TERMINOLOGY</td>
<td>27</td>
</tr>
<tr>
<td>1.2 THE PHILOSOPHY OF MAKING CHÂTEAU-STYLE WINES</td>
<td>30</td>
</tr>
<tr>
<td>1.3 WINE STYLES</td>
<td>31</td>
</tr>
<tr>
<td>1.4 GRAPES, FRESH JUICE, RECONSTITUTED JUICE, OR CONCENTRATE?</td>
<td>32</td>
</tr>
<tr>
<td>1.4.1 Wine from grapes</td>
<td>33</td>
</tr>
<tr>
<td>1.4.2 Wine from fresh grape juice</td>
<td>39</td>
</tr>
<tr>
<td>1.4.3 Wine from reconstituted grape juice</td>
<td>41</td>
</tr>
<tr>
<td>1.4.4 Wine from concentrate</td>
<td>42</td>
</tr>
<tr>
<td>1.5 GRAPE VARIETIES</td>
<td>45</td>
</tr>
<tr>
<td>1.5.1 White grape varieties from California</td>
<td>47</td>
</tr>
<tr>
<td>1.5.2 Red grape varieties from California</td>
<td>48</td>
</tr>
<tr>
<td>1.6 THE COMPOSITION OF WINES</td>
<td>48</td>
</tr>
<tr>
<td>1.7 WINEMAKING PROCESS</td>
<td>55</td>
</tr>
<tr>
<td>1.7.1 Winemaking from grapes</td>
<td>55</td>
</tr>
<tr>
<td>1.7.2 Winemaking from fresh grape juice</td>
<td>56</td>
</tr>
<tr>
<td>1.7.3 Winemaking from reconstituted grape juice</td>
<td>56</td>
</tr>
<tr>
<td>1.7.4 Winemaking from concentrate</td>
<td>61</td>
</tr>
<tr>
<td>2. WINEMAKING EQUIPMENT AND SANITATION</td>
<td>65</td>
</tr>
<tr>
<td>2.1 CRUSHER AND DESTEMMER</td>
<td>65</td>
</tr>
<tr>
<td>2.2 WINEPRESS</td>
<td>67</td>
</tr>
<tr>
<td>2.2.1 Basket press</td>
<td>68</td>
</tr>
<tr>
<td>2.2.2 Bladder press</td>
<td>70</td>
</tr>
</tbody>
</table>
2.3 VESSELS FOR FERMENTING, STORING, AND AGING WINE

2.3.1 DEMIJOHNS AND CARBOYS

2.3.2 NON-Glass FOOD-Grade CONTAINERS

2.3.3 PLASTIC AND CEMENT VATS

2.3.4 OAK BARRELS

2.3.5 STAINLESS STEEL TANKS

2.4 FERMENTATION LOCKS

2.5 MISCELLANEOUS EQUIPMENT

2.5.1 BUNGS

2.5.2 SIPHONS

2.5.3 SPECIAL SIEVE AND FAUCET

2.5.4 FLOATING THERMOMETER

2.5.5 VINOMETER

2.5.6 OTHER MISCELLANEOUS EQUIPMENT

2.5.7 MISCELLANEOUS LABORATORY EQUIPMENT

2.6 CLEANING AND SANITIZING

2.6.1 CAUSTIC CHEMICALS

2.6.2 CHLORINE

2.6.3 SULFITE

2.6.4 MAINTAINING, CLEANING AND SANITIZING TANKS

3. ANALYSIS AND CONTROL OF MUSTS AND WINES

3.1 SUGAR/ALCOHOL ANALYSIS AND CONTROL

3.1.1 UNDERSTANDING SUGAR AND ALCOHOL

3.1.2 MEASURING SUGAR AND POTENTIAL ALCOHOL CONTENTS

3.1.3 CHAPTALIZATION — CORRECTING THE SUGAR CONTENT

3.1.4 MEASURING ACTUAL ALCOHOL CONTENT IN DRY WINE

3.2 ACID ANALYSIS AND CONTROL

3.2.1 UNDERSTANDING ACIDITY

3.2.2 MEASURING TOTAL TITRATABLE ACIDITY (TA)

3.2.3 CORRECTING TOTAL TITRATABLE ACIDITY (TA)

3.2.4 MEASURING VOLATILE ACIDITY (VA)

3.2.5 CORRECTING VOLATILE ACIDITY (VA)

3.3 PH ANALYSIS AND CONTROL

3.3.1 UNDERSTANDING PH

3.3.2 MEASURING THE PH LEVEL

3.3.3 CORRECTING THE PH LEVEL

3.4 SULFUR DIOXIDE (SO₂) ANALYSIS AND CONTROL

3.4.1 OXIDATION, REDUCTION AND MICROBIAL SPOILAGE

3.4.2 UNDERSTANDING SULFITE AND SO₂

3.4.3 MEASURING THE AMOUNT OF FREE SO₂
3.4.4 Correcting the Amount of Free SO₂ .. 162
3.4.5 Sulfite Calculator ... 164
3.5 Phenolic Analysis and Control ... 164
 3.5.1 Understanding Phenolics ... 165
 3.5.2 Managing Phenolic Concentration .. 167
 3.5.3 Adjusting the Amount of Tannins .. 171

4. Making Wine ... 173
 4.1 Handling the Raw Material ... 174
 4.2 Crushing and Destemming ... 175
 4.3 Maceration ... 177
 4.3.1 Red Wine Maceration .. 177
 4.3.2 Cold Soak Maceration and Cap Management 179
 4.3.3 White Wine Maceration .. 185
 4.4 Macro- and Micro-Aeration .. 185
 4.4.1 Macro-Aeration ... 186
 4.4.2 Micro-Aeration (Micro-Oxygenation) ... 187
 4.5 Delestage ... 188
 4.5.1 How Delestage Works .. 189
 4.5.2 Delestage for Home Vinemakers .. 190
 4.5.3 Maximizing the Benefits of Delestage .. 192
 4.6 Pressing ... 192
 4.7 Alcoholic Fermentation ... 194
 4.7.1 Yeasts and Yeast Nutrients ... 194
 4.7.2 Conducting Alcoholic Fermentation ... 215
 4.7.3 Lees and the Practice of Bâtonnage ... 221
 4.7.4 Carbonic Maceration .. 224
 4.7.5 Stopping Fermentation ... 227
 4.8 Malolactic Fermentation (MLF) .. 229
 4.8.1 How MLF Works .. 230
 4.8.2 Selecting an MLB Culture ... 232
 4.8.3 Preparing for MLF ... 234
 4.8.4 Timing of the MLF .. 237
 4.8.5 Conducting MLF ... 238
 4.8.6 ML Determination by Paper Chromatography 240
 4.8.7 Inhibiting MLF ... 244
 4.9 Styles of Wine .. 245
 4.10 How the Pros Do It ... 246

5. Clarification .. 251
 5.1 Clarification by Racking .. 253
 5.1.1 Racking Schedule ... 254
 5.1.2 Topping Up .. 255
5.2 CLARIFICATION BY FINING .. 258
 5.2.1 Bentonite ... 261
 5.2.2 Casein ... 261
 5.2.3 Egg whites .. 262
 5.2.4 Gelatin ... 263
 5.2.5 Isinglass .. 263
 5.2.6 Kieselgel .. 264
 5.2.7 Pectic enzymes ... 264
 5.2.8 PVPP ... 265
 5.2.9 Sparkoloid .. 265
 5.2.10 Tannins .. 266
5.3 CLARIFICATION BY FILTRATION 266
 5.3.1 Understanding filtration 267
 5.3.2 Filtration equipment and systems 268
 5.3.3 Filtration .. 277

6. STABILIZATION ... 281
 6.1 Physical and chemical stabilization 282
 6.1.1 Cold stabilization 282
 6.1.2 Protein stabilization 285
 6.2 Microbial stabilization 286
 6.2.1 Screening for wild yeasts (Saccharomyces) 287
 6.2.2 Screening for spoilage yeasts (Brettanomyces) 290
 6.2.3 Screening for spoilage bacteria (Acetobacter,
 Lactobacillus and Pediococcus) 292
 6.2.4 Preservatives and stabilizing agents 296
 6.2.5 Stabilizing filtration 301

7. BLENDING .. 313
 7.1 Balance in wine .. 314
 7.2 Achieving balance ... 319
 7.3 Blending process ... 320
 7.4 The Pearson square .. 321

8. OAK BARRELS .. 325
 8.1 How barrels work .. 326
 8.2 Barrel types .. 327
 8.3 Barrel-buying considerations 328
 8.4 Barrel uses ... 330
 8.4.1 Barrel fermentation 330
 8.4.2 Oak-barrel aging ... 332
 8.4.3 Oak-aging considerations 333
8.5 ALTERNATIVES TO BARREL AGING FOR IMPARTING OAK AROMAS .. 334
 8.5.1 OAK ADJUNCTS ... 334
 8.5.2 OAK EXTRACT ... 335
8.6 OAK BARREL STORAGE, MAINTENANCE AND PREPARATION .. 337
 8.6.1 NEW BARREL STORAGE AND MAINTENANCE 337
 8.6.2 NEW BARREL PREPARATION .. 338
 8.6.3 USED BARREL STORAGE AND MAINTENANCE 340
 8.6.4 USED BARREL PREPARATION .. 341
8.7 OAK-BARREL SPOILAGE .. 342
 8.7.1 TYPES OF OAK-BARREL SPOILAGE PROBLEMS 342
 8.7.2 TREATING OAK-BARREL SPOILAGE PROBLEMS 344
8.8 BARREL RECONDITIONING 345
 8.8.1 COOPER’S TOOLS ... 346
 8.8.2 HOW TO RECONDITION A BARREL 347
 8.8.3 TOASTING BARRELS ... 351

9. BOTTLING .. 353
 9.1 BOTTLES .. 354
 9.2 BOTTLE WASHING DEVICES .. 356
 9.3 BOTTLING DEVICES .. 358
 9.3.1 STEM-AND-VALVE FILLER 359
 9.3.2 VACUUM-SToppers FUNNEL 359
 9.3.3 SEMI-AUTOMATIC FILLERS 360
 9.3.4 MULTI-SPOUT FILLERS .. 363
 9.3.5 BOTTLING .. 365
 9.4 CLOSURES FOR STILL-WINE BOTTLES 365
 9.4.1 CORKS .. 365
 9.4.2 SCREW CAPS .. 368
 9.4.2 CROWN CAPS .. 370
 9.5 CORKER .. 370
 9.6 CAPSULES .. 371
 9.7 LABELS .. 373

10. MAKING PINOT NOIR ... 375
 10.1 PREPARATION ... 376
 10.2 PHENOLIC EXTRACTION ... 377
 10.3 ALCOHOLIC FERMENTATION 377
 10.4 AGING, FINING AND BOTTLING 379

11. MAKING SPARKLING WINE 381
 11.1 PREPARATION .. 385
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>BOTTLE FERMENTATION</td>
<td>386</td>
</tr>
<tr>
<td>11.3</td>
<td>RIDDLING</td>
<td>390</td>
</tr>
<tr>
<td>11.4</td>
<td>DISGOREGEMENT, DOSAGE AND BOTTLING</td>
<td>393</td>
</tr>
<tr>
<td>11.5</td>
<td>DIALYSIS TUBING METHOD</td>
<td>401</td>
</tr>
<tr>
<td>11.5.1</td>
<td>PREPARATION</td>
<td>401</td>
</tr>
<tr>
<td>11.5.2</td>
<td>INOCULATION</td>
<td>402</td>
</tr>
<tr>
<td>11.5.3</td>
<td>AGING AND DOSAGE</td>
<td>402</td>
</tr>
<tr>
<td>11.6</td>
<td>CARBONATION METHOD</td>
<td>403</td>
</tr>
<tr>
<td>12.</td>
<td>MAKING PORT WINE</td>
<td>407</td>
</tr>
<tr>
<td>12.1</td>
<td>MUST PREPARATION</td>
<td>409</td>
</tr>
<tr>
<td>12.2</td>
<td>ALCOHOLIC FERMENTATION</td>
<td>409</td>
</tr>
<tr>
<td>12.3</td>
<td>ALCOHOL FORTIFICATION</td>
<td>411</td>
</tr>
<tr>
<td>13.</td>
<td>MAKING ICEWINE</td>
<td>413</td>
</tr>
<tr>
<td>13.1</td>
<td>MAKING ICEWINE FROM FRESH JUICE</td>
<td>416</td>
</tr>
<tr>
<td>13.1.1</td>
<td>MUST PREPARATION</td>
<td>416</td>
</tr>
<tr>
<td>13.1.2</td>
<td>ALCOHOLIC FERMENTATION</td>
<td>417</td>
</tr>
<tr>
<td>13.1.3</td>
<td>STOPPING ALCOHOLIC FERMENTATION</td>
<td>417</td>
</tr>
<tr>
<td>13.2</td>
<td>MAKING SPARKLING ICEWINE FROM CONCENTRATE</td>
<td>418</td>
</tr>
<tr>
<td>13.2.1</td>
<td>PREPARATION</td>
<td>420</td>
</tr>
<tr>
<td>13.2.2</td>
<td>ALCOHOLIC FERMENTATION</td>
<td>423</td>
</tr>
<tr>
<td>13.2.3</td>
<td>BOTTLING</td>
<td>424</td>
</tr>
<tr>
<td>14.</td>
<td>TROUBLESHOOTING WINEMAKING PROBLEMS</td>
<td>425</td>
</tr>
<tr>
<td>14.1</td>
<td>ALCOHOLIC FERMENTATION IS STUCK OR SLUGGISH</td>
<td>432</td>
</tr>
<tr>
<td>14.2</td>
<td>MALOLACTIC FERMENTATION (MLF) IS STUCK OR SLUGGISH</td>
<td>435</td>
</tr>
<tr>
<td>14.3</td>
<td>COLOR IS TOO LIGHT</td>
<td>437</td>
</tr>
<tr>
<td>14.4</td>
<td>WINE IS BROWNING AND/OR SMELLS LIKE SHERRY</td>
<td>438</td>
</tr>
<tr>
<td>14.5</td>
<td>WINE SMELLS VINEgary OR OF NAIL POLISH REMOVER, AND/OR HAS FORMED A WHITE FILM</td>
<td>439</td>
</tr>
<tr>
<td>14.6</td>
<td>WINE SMELLS OF SULFUR</td>
<td>440</td>
</tr>
<tr>
<td>14.7</td>
<td>WINE SMELLS OF ROTTEN EGGS OR BURNT RUBBER</td>
<td>440</td>
</tr>
<tr>
<td>14.8</td>
<td>WINE SMELLS YEASTY</td>
<td>443</td>
</tr>
<tr>
<td>14.9</td>
<td>WINE IS CLOUDY</td>
<td>443</td>
</tr>
<tr>
<td>14.10</td>
<td>WINE THROWS TARTRATE CRYSTAL DEPOSITS</td>
<td>444</td>
</tr>
<tr>
<td>14.11</td>
<td>WINE IS FIZZY OR CARBONATED</td>
<td>445</td>
</tr>
<tr>
<td>14.12</td>
<td>WINE IS TOO SWEET</td>
<td>446</td>
</tr>
<tr>
<td>14.13</td>
<td>TA AND/OR PH IS TOO LOW OR TOO HIGH</td>
<td>446</td>
</tr>
<tr>
<td>14.14</td>
<td>WINE TASTES OVERLY BITTER</td>
<td>447</td>
</tr>
<tr>
<td>14.15</td>
<td>WINE IS HOT AND HEADY</td>
<td>448</td>
</tr>
<tr>
<td>14.16</td>
<td>WINE HAS AN UNPLEASANT SMELL OF GERANIUMS</td>
<td>448</td>
</tr>
</tbody>
</table>
The journey from grape to glass is filled with many key decisions for any winemaker. Every step of the way a winemaker has to pick from among a host of different techniques to create their dream wine. Luckily for hobby winemakers, Daniel Pambianchi is around as a guide through the often-confusing world of winemaking. In every issue of WineMaker Magazine since 2000 Daniel has helped hobby winemakers better understand how to make better wine with his “Techniques” column. From testing the fresh grapes before crush all the way to bottling, Daniel has covered the full spectrum of techniques you need in a clear, easy-to-understand way over the years. Daniel has a real skill in breaking down complex information into laymen’s language that at the same time doesn’t water down the subject. In fact, WineMaker Magazine’s readers have always given Daniel high marks in annual surveys and mention his skill of making all techniques and winemaking science, no matter how advanced and difficult, simple and comprehensible. Just like WineMaker readers have found out when reading Daniel’s articles, you will get straightforward, practical techniques and learn skills you can put to use in your home winery in the pages that follow.

In the years since the first edition of Techniques in Home Winemaking was published Daniel has tirelessly added to his winemaking knowledge. He continues to write his “Techniques” column in the magazine as well as judging our annual wine competition. Behind the scenes at the magazine, he acts as our Technical Editor reviewing every article we publish for technical accuracy and keeping up on new trends and information in the winemaking world. Outside of the magazine, he has taken his award-winning home winemaking hobby to the next level by now becoming an award-winning professional winemaker. His Maleta Estate Winery in Niagara-on-the-Lake, Ontario is garnering critical praise as Daniel continues to discover new techniques in winemaking and to offer advice from which one can benefit by reading his book. This new edition of his Techniques in Home Winemaking
incorporates this wealth of knowledge and all the latest information and experience that Daniel has to share.

In our offices at WineMaker Magazine and winemaker-mag.com, earlier editions of Daniel's Techniques in Home Winemaking are dog-eared and show the wear and tear of constant use as we refer back again and again to answer some winemaking question we might have when working on a story. I'm thrilled now with this new edition I can get my hands on some fresh copies with plenty of fresh new content to replace those worn out earlier editions. Enjoy Daniel's book as it helps you enjoy the fun and satisfying world of hobby winemaking.

Brad Ring
Publisher, WineMaker Magazine
The subject of wine comprises three major areas: Viticulture, enology, and wine appreciation. Viticulture and enology are the sciences and practices of grape growing and winemaking, respectively. Wine appreciation includes tasting – for the purpose of evaluating wine and to convey that assessment to wine enthusiasts – and drinking. This book specifically deals with the science and practice of winemaking, or enology. Consult Appendix E for a list of references available for further reading on viticulture and wine appreciation.

The objectives of this book, then, are to introduce winemaking techniques and products – updated to reflect what is currently available on the market – to novice home winemakers while providing serious and advanced amateur winemakers with proven and practical techniques to produce premium-quality wines that are virtually indistinguishable from their professional counterparts. On occasions, when experimenting or when the year’s crop has produced low or average quality grapes, home winemakers will have to make use of techniques and products described herein to “correct” the wine. Correction is required to achieve balance among aromas, flavors, body, taste and color in the finished wine. Ultimately, wine is best enjoyed when it is well balanced.

Techniques and products include the use of various winemaking equipment, enological chemicals and ingredients, and vinification (the conversion of grape juice into wine by fermentation) techniques and procedures. The ability to produce a good to superior wine under adverse conditions depends on one’s knowledge and experience of these techniques and products. Experienced winemakers will know how to vinify must (grape juice) into wine through the various stages such that the probability of faults in the finished wine is greatly reduced. Home winemakers are encouraged to experiment to decide which techniques produce a desired wine style.
How to use this book
This book can first be read to learn about the science, principles and practices of home winemaking, and wine analysis. It can then serve as a reference textbook for analytical procedures, to determine quantities of ingredients to be added, to review specific advice on winemaking procedures, and to determine the root cause when encountering problems.

Chapters are presented in a logical order by first providing an introduction to winemaking and necessary winemaking equipment. A thorough discussion of must and wine analysis serves as a foundation to understanding winemaking and vinification procedures. A solid working knowledge of sugar and alcohol measurements, acidity, pH, sulfur dioxide levels and phenolic compounds is necessary to be able to produce the highest quality wine according to one’s desired wine style. Detailed descriptions of winemaking procedures are then presented in the general order that these are performed from fermentation to aging and bottling.

When used as a reference textbook, readers can consult any chapter or section as these have been laid out independently of one another. This also allows winemakers to pick and choose procedures according to the desired wine style. For example, the section on malolactic fermentation can be skipped entirely if this type of fermentation is not desired. Likewise, the chapter on oak barrels may be skipped if not oak-aging wine although alternatives to barrels are discussed.

Specifically:

Chapter 1 provides an overview of winemaking and winemaking terminology, the various wine types and styles that home winemakers can produce, and the available grape juice varieties. Pros and cons of winemaking from grapes, juice and concentrate are discussed. Winemaking flowcharts are presented to illustrate the complete processes from grape crushing to fermentation to bottling.

Chapter 2 describes all the necessary equipment for home winemaking and instructions on its proper use for producing premium wines. The importance of cleaning and sanitizing all equipment and of maintaining a sanitized environment throughout the winemaking cycle is also explained.

Chapters 3 deals with the analysis and control of musts and wines – specifically, sugar and alcohol, acidity and pH, sulfur dioxide, and phenolic components – which are key in producing the best wines. This chapter explains the significance of measuring and controlling these components and their role in winemaking.
Chapter 4 discusses vinification and winemaking procedures essential to producing premium wines, from crushing and destemming – or, must preparation, in the case of juice or concentrate – to stabilization. Other procedures include maceration, micro-oxygenation, delestage, pressing, and alcoholic and malolactic fermentations.

Chapter 5 details clarification procedures, namely, racking, fining and filtration. These are discussed separately so that winemakers can decide which method(s) to adopt to produce a desired wine style. Clarification by fining and/or by filtration remain much-debated topics. This chapter provides pros and cons of each process to allow winemakers to make their own choice.

Chapter 6 describes physical, chemical and microbial stabilization processes and products key to ensuring that wines remain stable once bottled, and how to screen for spoilage organisms that may affect the quality of wine. The all-important topic on stabilizing filtration – better known as membrane filtration, or (though inappropriate) sterile filtration – is described in detail.

Chapter 7 provides guidelines on the traditional art and process of blending wines. The practice of blending wines has existed since the early days of winemaking and is still used in modern winemaking in spite of the popularity of varietals (wines from single grape varieties). Blending allows winemakers to take advantage of the individual grape variety characteristics to produce more complex, interesting wines and to achieve balance among components, namely, sweetness, acidity, alcohol, body, aromas, and flavors.

Chapter 8 describes the use, conditioning or preparation and maintenance of oak barrels in winemaking, and how to ferment and age wine in barrels. Barrel spoilage problems, their treatments and preventive measures are also discussed. Alternatives to oak barrels for imparting oak aromas are presented. And if you are a handy person skilled in woodworking, you will enjoy the section on barrel reconditioning and extending the life of your barrels.

Chapter 9 describes the necessary equipment required for bottling wine as well as various techniques used to increase bottling efficiency.

Chapters 10, 11, 12 and 13 provide step-by-step instructions on the production of Pinot Noir wine from grapes, sparkling wine, Port and Icewines, respectively, making use of techniques introduced in earlier chapters.

Chapter 14 provides a comprehensive guide and quick reference chart for troubleshooting the most common vinification problems that home winemakers may come across, and techniques used to resolve them. This is undoubtedly one of the most
important chapters because things don’t always proceed according to plans.

Chapter 15 outlines the proper design and construction of a small home winery and cellar that will serve your winemaking and cellaring needs. Planning and building instructions will help you set up that perfect environment for your wines.

Appendix A lists conversion factors between Metric, US and Imperial systems for relevant measurements.

Appendix B provides a handy conversion table for converting between Specific Gravity, Brix % sugar (wt/vol) and potential alcohol, as well as tables to correct hydrometer readings taken at different temperatures than the instrument’s calibration temperature.

Appendix C provides a winemaking log chart that can be used to record all winemaking and vinification activities. Keeping records of a wine’s progress and treatments is key to successful winemaking.

Appendix D provides a summary chart of winemaking ingredients and chemicals, and concentrations presented throughout this book. It can be used as a quick-reference guide.

Appendix E lists some recommended reading to learn more about grapes, winery technology, the chemistry of vinification, analytical methods in winemaking and oak barrel maintenance.

The following table can be used as a guideline to determine which sections of this book are recommended for you based on your level of expertise, knowledge and skills.
Ideally, there should be no leaves with grapes when shipped or picked up from a local market; however, if there is at least one leaf, examine its morphology – shape, size, number of lobes, shape and size of serrations, etc. – to get some clues about variety. Each vine species within a genus is characterized by common traits, particularly when it comes to leaf shape, illustrated in Figure 1-4, which is easiest to examine, albeit not always obvious. For example, *V. vinifera* varieties typically have a five-lobe leaf, but to the untrained eye, that simple count is not always easy. Then, each variety within a species is characterized by a specific petiolar sinus, lateral sinus, and shape of serrations. Leaf morphology alone cannot provide a definitive answer on variety as it can vary even for leaves from the same vine. This is also very difficult to assess by an untrained eye, so study hard and long.

At this point, bunch, berry and leaf morphologies for any variety should be easily described and compared to data from grape variety handbooks. For example, the following would be typical descriptions for Pinot Noir, Cabernet Sauvignon, and Chardonnay varieties. A picture of grape bunches and leaves for each are provided in Figure 1-5, 1-6 and 1-7, respectively.

Pinot Noir
- **Grape bunch**: small; conical
- **Berry**: small; spherical
- **Skin**: very thin; light colored
- **Leaf**: deep petiolar sinus; shallow lateral sinuses

1See footnote, page 36
<table>
<thead>
<tr>
<th>Grape variety</th>
<th>Types & styles</th>
<th>Main characteristics</th>
<th>Acidity</th>
<th>Affinity for oak</th>
<th>Aging potential</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chardonnay</td>
<td>Dry Sparkling</td>
<td>High alcohol</td>
<td>Moderate</td>
<td>Excellent</td>
<td>Very good</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fruity aroma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Butter texture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chenin Blanc</td>
<td>Dry Sweet Sparkling</td>
<td>High sugar content</td>
<td>High</td>
<td>Poor</td>
<td>Excellent (for sweet wines)</td>
<td>Very good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High acidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombard</td>
<td>Dry</td>
<td>Low alcohol</td>
<td>High</td>
<td>Poor</td>
<td>Poor</td>
<td>Average</td>
</tr>
<tr>
<td>Gewürztraminer</td>
<td>Dry Sweet Icewine Sparkling</td>
<td>High alcohol</td>
<td>Low</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spicy aroma and taste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscat</td>
<td>Dry Fortified Sweet Sparkling</td>
<td>High sugar content</td>
<td>Moderate</td>
<td>Good</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grapey aroma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palomino</td>
<td>Dry Icewine Fortified</td>
<td>Low sugar content</td>
<td>Low</td>
<td>Not recommended</td>
<td>Poor</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxidizes quickly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1-1
California *V. vinifera* white grape varieties
Figure 1-10: White winemaking from grapes – process flowchart
A
ABV, 110
Acaci, 300
ACCUVIN QUICK TESTS
D-lactic acid, 288, 294–296
free SO₂, 158–159
L-lactic acid, 127–128, 133, 239
malic acid, 127–128, 133, 239
pH, 142
residual sugar, 115–116
titratable acidity, 126–127
acetaldehyde, 147–148, 150, 438. See also oxidation
acetic acid. See acid, acetic. See also spoilage, acetic
acetic spoilage. See spoilage, acetic
acetification, 122. See spoilage, acetic
Acetobacter. See spoilage, acetic
acetii. See spoilage, acetic
screening for, 288, 292–295, 343
3-methylbutyric acid, 290
problems. See also spoilage, acetic
addition. See acidification
analysis and control, 120–139
ascorbic, 149, 158, 296–297
blends, 130–131, 135, 142–144, 147, 235
citric, 49, 54, 102, 120–122, 130–131, 135, 143–144, 147, 232, 235, 240–244
dehydrorscorbic, 296
D-lactic, 121, 288, 292–296. See also acid, lactic. See also spoilage, lactic
isovaleric, 290
See also spoilage, lactic
L-lactic, 121. See acid, lactic
L-malic, 121. See acid, malic
metatartaric, 131, 228, 283, 285, 299–300, 445
oxalic, 101
pantothenic, 212
phosphoric, 146, 160, 446–447 reduction. See deacidification
sorbic, 448
succinic, 415
sulfuric, 123, 159
sulfurous, 149, 339
titratable. See acidity, total titratable
volatile. See acidity, volatile
ACIDEX, 132–133, 135, 144
acidification, 129–131, 142–144
acidity, 105–106, 120–139, 166, 193, 300, 315, 317–318, 430, 446–447. See also pH
active. See pH
total titratable, 48–49, 120–139, 218, 230–232, 234–235, 284, 430, 446–447. See also pH
volatile, 121–123, 131, 134–139, 174, 193, 201, 210, 215, 232, 235, 238, 246, 256, 415, 426, 432, 434. See also oak, barrel spoilage problems. See also spoilage, acetic
ACIDOMETER, 126, 158–159
actidione, 288, 294
activated carbon, 259, 439, 443
aeration, 170, 178. See also delestage. See also macro-aeration. See also micro-oxygenation
aeration-oxidation, 156, 158, 159–162
aging, 29–30, 164–167
cellar, 451
oak barrel. See oak aging
analysis and control, 106–113, 116–120
fortification, 227–229, 411
tolerance, 111, 197
alcoholic fermentation. See fermentation, alcoholic
aldehyde, 150. See also acetaldehyde
Alicante Bouschet, 46, 52, 178, 437
Allier, 327
amelioration, 130, 142. See also water addition
American oak, 327–328, 334
ammonium sulfate, 212
ampelography, 46
anthocyanins, 165–167, 177, 258. See also color, pigments
antifoaming agent, 424
antioxidant, 149–151. See also sulfite.
See also sulfur dioxide, free
AO. See aeration-oxidation
aphrometer, 389–390
Arabinol, 300
argon, 180, 255
INDEX

ascorbic acid. See acid, ascorbic
Aseptox, 99
aspiration method. See aeration-oxidation
assemblage, 313
Asti Spumante, 31, 384
astringency, See bitterness
autolysis, 217, 221–222, 254, 382, 429, 443

B
Bacchus, 233, 235
Baco Noir, 46
bacteria
acetic acid. See spoilage, acetic
Acetobacter. See spoilage, acetic.
See also Acetobacter,
screening for
D-Lactic acid. See spoilage, lactic.
See also D-Lactic aid,
screening for
indigenous, 149, 230–231. See also fermentation, malolactic
lactic acid. See spoilage, lactic. See also oak, barrel spoilage
problems
Lactobacillus. See spoilage, lactic.
See also Lactobacillus,
screening for
Leuconostoc oenos. See bacteria,
Oenococcus oenos
malolactic, 230. See fermentation,
malolactic
Oenococcus oenos, 230, 232–233, 245. See also fermentation,
malolactic
Pediococcus. See spoilage, lactic.
See also Pediococcus,
screening for
Balling, 107
Barbera, 52, 320
Barrel Builders, 350
BarrelGuard, 340
barrels. See oak, barrels
bâtonnage, 222–224, 330–331. See also lees, stirring
Baumé, 107
Beaujolais Nouveau, 56, 224–225, 227
beergas, 255
beet sugar. See sucrose
bench tests, 260
bentonite, 41, 155–156, 217, 258, 261, 286, 299
benzene, 165
Better Bottle, 75. See also carboy, PET
bidule, 387–388
biotin, 212
bisulfite. See potassium metabisulfite.
See sodium metabisulfite
bitterness, 69, 165–171, 300, 315, 431, 447–448. See also balance. See also phenolic extraction. See also tannin
blanc de blancs, 31, 219, 385. See also wine, sparkling
blanc de noirs, 31, 48, 219, 385. See also wine, sparkling
blending, 30, 47, 129–132, 135, 142, 144, 147, 313–323
blush. See wine, rosé
Bocksin, 442–443
BoosterRouge, 448
Bordeaux, 47, 320
Botrytis cinerea, 213
bottle shock, 368
bottles, 354–358
bottling, 30, 353–374
bound SO₂. See sulfur dioxide, bound
Brett. See Brettanomyces
Brettanomyces, 154, 288, 290–295, 301,
cap, 28, 180
carbon dioxide, 28–29, 31, 73, 106, 133,
135, 180, 182, 222, 224, 230,
255, 430, 445–446
carbonation, 31, 385, 403–406
carbonic maceration. See maceration,
carbonic

PET, 75, 190, 253
Carignan, 52, 225
Carnelian, 52
casein, 258, 261–262, 438–439
Cash still, 134–137
Catawba, 46
cava, 31, 382
cellar, 451–458
cellulose, 69, 193
Chambourcin, 46
Champagne, 31, 48, 222, 314, 317,
381–400. See also wine, sparkling

Chaptalization, 28, 116–118
Chardonnay, 38–39, 46, 49, 50, 120,
185, 199–200, 202–205, 218–219,
222, 230–231, 248–249, 315–316,
320, 328, 330, 332, 334, 385
Charmat process, 384, 419. See also

wine, sparkling

Château d’Yquem, 31, 320, 479
Châteauneuf-du-Pape, 47
Chenin Blanc, 50, 199, 202–205, 315,
334, 385

chill proofing. See stabilization, cold
chlorine, 100, 101–102
chromatogram, 243–244
chromatography, 127, 232, 239,
INDEX

240–244
citric acid. See acid, citric
clarification, 29, 57, 251–280
filtration, by, 29, 57, 252, 266–280
fining, by, 29, 57, 252, 258–266
racking, by, 29, 252, 253–255
Claro K.C., 264
classical method, 381–400
cleaning, 97–103
CLINITEST, 113–115
cloudiness, 251–255, 264–265, 282,
285–286, 297, 429, 443–444. See
also clarification. See also pectin
CO2. See carbon dioxide
coinoculation. See fermentation,
malolactic
cold
soak. See maceration, cold soak
stabilization. See stabilization,
cold
colloid, 300
colloidal dispersion, 300
Colombard, 50, 316
color. See also phenolic extraction
intensity, 105–106, 138–140, 148,
168–171, 175, 177–185,
192–193, 259, 427–428,
437–439
pigments, 54, 105, 158, 164–171,
177, 258, 300
Concord, 225
cooling
evaporation, by, 82–83
jacket, 82
plate, 83
copper
sulfate, 442
sulfide, 442
Cordenons, Gruppo, 275
corked wine. See wine, corked
corker, 370–371
corks, 101, 188, 365–369
corn sugar. See dextrose
counterfining, 261, 286
Crowe, Alison, 442
crown caps, 370. See also bidule
crusher, 65–67, 168
crushing, 57, 65–67, 168, 175–176, 264
cryoextraction, 413–416
culture
malolactic, 232–235
MBR, 232–235
cuve close, 384
cuvee, 319, 381–382
cycloheximide, 288, 294
D
DAP, 212. See yeast, nutrients
de Chaunac, 46
deacidification, 129, 132–133, 135, 142,
144–145, 147. See also
fermentation, malolactic. See also
stabilization, cold
decanting, 408
degassing, 135, 270, 445
dehydroascorbic acid. See acid,
dehydroascorbic
Dekkera, 290
delestage, 57, 169–170, 187, 188–192
demijohn, 71–73
destemmer, 66–67, 168
destemming, 57, 66–67, 168, 175–176
dextrose, 28, 107, 116
diacetyl, 230, 233, 238
dialysis, 384–385, 401–403
diammonium phosphate, 41, 212
disgorgement, 382, 393–396, 397
à la volée, 396–397
disulfides, 186, 443. See also hydrogen
sulfide. See also mercaptans
D-lactic acid. See acid, D-lactic

493
screening for, 288, 292–296
Domaine de La Romanée-Conti, 31, 478
dosage, 317, 381–382, 396–399
Double Blast Bottle Washer, 356–357
double salt precipitation, 132, 144

E
ebulliometer, 118–120
ebullioscope, 118
Efferbaktol, 154, 296
egg white, 258, 262–263
Eiswein 413–414. See also Icewine
ENOLMASTER, 361–362
ENOLMATIC, 362
enzymes, 107
macerating, 168–169, 182–183, 190, 192, 213
oxidizable, 147
pectic, 258, 264–265, 429, 444. See also stabilization, protein
pectolytic, 217–218, 221
ethanol, 48–49, 54, 106, 113, 256, 438. See also alcohol
ethyl acetate, 122, 293, 343
alcohol. See ethanol

F
4-ethylguaiacol, 290
4-ethylphenol, 290
Fermaid K, 212
fermentation
alcoholic, 28, 48–49, 57, 106, 111–112, 116–117, 121, 127, 130, 141, 143, 177, 179, 182, 194–221. See also
fermentation, stuck, alcoholic barrel, 330–332
hoses, 84, 91, 176, 181
Hungarian oak, 327
hybrid, 46
hydrogen
 peroxide, 99, 135–136, 160, 162, 428, 440
 sulfide, 36, 86, 186, 201, 210–212, 218, 221–222, 337, 429, 440–443. See also mercaptans
hydrometer, 38, 107–113, 463, 468–469
hydroxybenzene, 165–166

I
Icewine, 120, 199–200, 205, 316, 334, 413–424
 sparkling, 418–424
immersion plate, 83, 185
Imperial system, 25
inoculation, 214–215
inoculum, 214–215. See also yeast starter
International System of Units, 25
intracellular fermentation, 224–226.
 See also maceration, carbonic
iron, 297, 444
casse. See ferric casse
isinglass, 41, 258, 263–264
isomer, 121
isovaleric acid, 290

J
juice, 28
 apple, 237, 239
 concentrate, from, 33, 174–175
 free-run, 69, 179, 193–194, 264
 fresh, 28, 39–41, 174–175
 grapes, from, 32–33, 174–175
 key ingredients in, 54–55
 press-run, 69, 193–194, 264
 reconstituted, 41, 174–175
 volume, 85
yield, 71, 116

K
KaPh. See potassium acid phthalate
kieselsol, 227, 258, 264, 442
kit, 32–33, 40–45
KMS. See potassium metabisulfite

L
LAB. See bacteria, lactic acid
labels, 373–374
lactic
 acid. See acid, lactic
 spoilage. See spoilage, lactic. See also acid, D-lactic
taint. See spoilage, lactic
Lactobacillus. See spoilage, lactic
 screening for, 288, 292–295
Lallemand
 Bacchus, 233, 235
 BoosterRouge, 448
 Fermaid K, 212
 GO-FERM, 212, 214, 220
 LALLZYME EX, 168, 183, 213
 LALLZYME LYSO-Easy, 155, 175, 215, 245, 299
 malolactic culture, 233–235
 OPTI’MALO PLUS, 237, 436–437
 OptiRED, 212–213, 427, 429, 431, 436, 443, 447
 OptiWHITE, 212–213, 428, 439
 yeast. See yeast, Lallemand
LALLZYME EX, 168, 183, 213
LALLZYME LYSO-Easy, 155, 175, 215, 245, 299
Lalvin
 yeast. See yeast, Lallemand
 leaf morphology. See grape, morphology
lees, 29, 217, 221, 221–224, 236, 253, 254, 258–259, 382
fine, 217, 222, 236
gross, 217, 222, 443
stirring, 222–224, 239, 330–331. See also bâtonnage

Lesaffre
Superfood, 212
yeast. See yeast, Lesaffre

Leuconostoc oenos, 232

lift, 95–96
Limousin, 327

Lin’s Wild Yeast Media, 287–290
liqueur d’expédition, 396–397
L-lactic acid. See acid, lactic
L-malic acid. See acid, malic
Loire Valley, 222

I WYM, 287–290

M
macerating enzymes, 168–169, 182–183, 190, 192, 213
maceration, 28, 57, 76, 78, 177–185
carbonic, 56, 60, 224–227, 263
cold soak, 168, 177–178, 179–185
extended, 182. See maceration, post-fermentation
post-fermentation, 168–169, 177–178, 182
pre-fermentation. 168, 177–178, 179–185
red wine, 177–185. See also delestage
rosé wine, 178
white wine, 185
macération carbonique. See maceration, carbonic
macro-aeration, 57, 185–187
malic acid. See acid, malic
malolactic fermentation, 229–245, 427, 229–245. See fermentation, malolactic
nutrients, 236–237, 427, 435–436
Maréchal Foch, 46
Markham still, 134
McMillan, Eddie, 351
MELVICO, 403–406
membrane filtration. See filtration, stabilizing
mercaptans, 186, 210, 222, 441, 443
Merlot, 46–47, 52, 178, 199–200, 203, 205, 249, 320, 328
metabisulfite. See potassium metabisulfite. See sodium metabisulfite
metatartaric acid. See acid, metatartaric
methanol, 265
méthode
champenoise, 381–400
classique, 381–400
traditionelle, 381–400
Metric system, 25
microbial
micron, 267
micro-aeration, 57. See also micro-oxygenation
micro-oxidation, 170, 187. See also micro-oxygenation
micro-oxygenation, 170, 185–186, 187–188, 325–327, 335
MicroQit DETECT, 288, 291–292, 343–344
Mildewcide, 340
Minijet, 272–277
Mission, 53
ML fermentation. See fermentation, malolactic
MLF, 230. See also bacteria, Oenococcus oenos
mold, 99, 174, 342–345
molecular SO₂. See sulfur dioxide, molecular
morphology. See grape, morphology
Moscato d’Asti, 316
Mouton-Rothschild, 320
Muscadet de Sèvre et Maine, 222
Muscat, 50, 69, 193, 204–205, 248, 316, 385, 416
must, 28. See also juice
mycoderma, 148, 256, 439–440
N
nanofiltration, 246
NaOH. See sodium hydroxide
Nebbiolo, 53, 199, 204, 320, 334
Never, 327
Niagara, 46
nitrogen, 180, 211–212, 255
noble rot, 213
Normality, 123–124, 129
Norton, 46
nutrients,
malolactic, 236–237, 427, 435–436
yeast, 41, 201, 211–213, 214, 220, 434
O
oak
adjuncts, 334–335
aging, 30, 57, 170, 176, 186–187, 262, 332–334
barrel fermentation, 330–332
barrel reconditioning, 345–352
barrel spoilage problems, 99, 342–345
barrel storage, maintenance and preparation, 99, 256–257, 336–341
barrel toasting, 328, 351–352
barrels, 72, 77, 176, 239, 325–352
beans, 334
chips, 334–335
extract, 334–336
mor chips, 334–335
segments, 334
staves, 334–335
types, 327–328
Öechsle, 107
Oenococcus oenos, 230, 232–233. See also fermentation, malolactic
Oenosteryl, 154, 296
One Step, 99
OPTI’MALO PLUS, 237, 436–437
OptiRED, 212–213, 427, 429, 431, 436, 443, 447
OptiWHITE, 212–213, 428, 439
organoleptic qualities, 30, 55, 194
oxalic acid. See acid, oxalic
OxBox, 188
oxidases, 147
oxidation, 29, 86, 140, 146–149,
150, 166–167, 175, 180, 182, 212, 255–256, 262, 284, 296–297, 428, 438–439
See also oxidation
P
Pall Seitz Schenk, 275
Palomino, 50, 416
pantothenic acid. See acid, pantothenic
paper chromatography.
See chromatography

pasteurization, 41
pasteurizer, 45
Pauillac, 320
Pearson Square, 131, 144, 229, 321–323
pectic enzymes, 258, 264–265, 429, 444. See also cloudiness. See also heat stability
pectin, 264–265, 429, 444 See also cloudiness. See also heat stability
pectolytic enzymes, 217–218, 221
Pediococcus. See spoilage, lactic screening for, 288, 292–295
penicillium, 343
pentose, 106
percarbonate. See sodium percarbonate
perlage, 399
PET. See carboy, PET
Petit Verdot, 320
Petite Sirah, 53, 205
Pétrus, 320
Peynaud, Émile, 148, 164–165, 252, 315
analysis and control, 138–147
meter, 141–142
paper, 141
phenolic. See also phenols
analysis and control, 164–171
extraction, 164–171, 177–185, 188–194, 224–225
phenolphthalein, 123–125, 129, 137
phenols, 54, 149, 158, 164–171, 245, 258, 263, 436. See also color pigments. See also tannin
phosphoric acid. See acid, phosphoric
Pillan

filter systems, 272–277
Pinot
Blanc, 51, 203–204, 316, 320
Grigio, 51, 199, 202, 204, 219, 248
Gris. See Pinot Grigio
Meunier, 385
piqueur lactique, 293. See also spoilage, lactic
Polyclar, 265
polyethylene terephthalate. See carboy, PET
polymerization, 166, 170
polyphenoloxidase, 147
polyphenols. See phenols
polyvinylpyrrolidone, 265. See PVPP
pomace, 28, 183
Pomerol, 320
Port, 32, 201, 227, 319, 334, 407–411
Late-Bottled Vintage (LBV), 407–408
Ruby, 407–408
Tawny, 407–408
Vintage, 407–408
potassium, 49, 139, 145
acid phthalate, 124, 128–129
acid tartrate, 134, 282. See potassium bitartrate
bicarbonate, 132, 135, 144, 154
bitartrate, 44, 48, 132–134, 145, 284, 415. See also stabilization, cold
metabisulfite, 102, 151–153, 154, 296, 298
sorbate, 41, 118, 137, 227, 238, 297–298, 431, 448
press, 67–71
TECHNIQUES IN HOME WINEMAKING

basket, 67–69
bladder, 70–71
pressing, 57, 67–71, 192–194
aids, 69, 193
pressure differential, 308
prise de mousse, 382. See also
fermentation, bottle. See also
wine, sparkling
Private Reserve, 255–256
problems, winemaking, 425–449
acetic spoilage, 428, 439–440, 449
Acetobacter, 428, 439–440, 449
acidity, 430, 446–447
alcohol level, 431, 448
autolysis, 429, 443
balance, 447–448
barnyard smell, 431, 449
bitterness, 431, 447–448
Brettanomyces, 431, 449
browning, 428, 438–439
burnt-match, 440
burnt-rubber smell, 429, 440–443
carbon dioxide gas, 430, 445–446
cloudiness, 429, 443–444
color, 427–428, 437–439
fermentation, alcoholic, stuck, 426, 432–435
fermentation, malolactic, stuck, 426, 435–437
ferric casse, 429, 444
fizziness, 430, 445–446
geranium smell, 431, 448
hydrogen sulfide, 429, 440–443
lactic taint, 431, 449
Lactobacillus, 431, 449
maderization, 148. See also
oxidation. See also
acetyldehyde
mercaptans, 443
moldy smell, 431, 449
musty smell, 431, 449
mycoderma, 439
nail polish remover smell, 428, 439–440
oxidation, 428, 438–440
Pediococcus, 431, 449
pH, 430, 446–447
residual sugar, 430, 446
rotten-cabbage smell, 441
rotten-egg smell, 429, 440–443
sewer smell, 441
Sherry smell, 428, 438–439
sour-milk taste, 431, 449
stuck alcoholic fermentation, 426, 432–435
stuck malolactic fermentation, 426, 435–437
sulfur smell, 428, 440
sweetness, 430, 446
tannins, 431, 447–448
tartrate crystals, 430, 444–445
TCA, 431, 449. See also TCA
vinegar smell, 428, 439–440
white film, 428, 439–440
yeasty smell, 429, 443
ProDessert, 227, 246–247
propylene glycol, 184. See also glycol
protein, 155–156, 166, 258, 261, 264, 266, 285–286
haze, 285–286. See also cloudiness
stabilization, 285–286
ProxyClean, 99
psid, 308
pump, 176, 181, 269–272, 305
centrifugal, 269–272
positive displacement, 269–272
pre-filter, 270
priming, 269–272
pump over, 169–170, 178, 179–182. See also delestage. See also
macro-aeration
 See also maceration, cap
management
punt, 354–355
pupitre, 390
PVPP, 171, 258, 265

Q
Quercus, 327–328
 alba, 327
 pendunculata, 327–328
 robur, 327
 sessilis, 327–328

R
rack-and-return, 170, 187, 189–190. See
delestage
racking, 29, 150, 164, 170, 253–255,
 259. See also macro-aeration
RAPIDASE AR2000, 217
RED STAR
 yeast. See yeast, Lesaffre
redox potential, 149
reduction, 148–149
refractometer, 38–39, 109–111
remontage, 181
remuage, 382, 390
remueur, 392
residual sugar. See sugar, residual
retention rating, 267–268
reverse osmosis, 246, 448
rice hulls, 69, 193
riddling, 382, 390–393
 aid, 387
 rack, 390
Riesling, 51, 199–200, 202, 205, 219,
 230, 248, 283, 315, 334, 385, 414,
 416
Ripper method, 156–158
RO. See reverse osmosis

Romanée–Conti, See Domaine de la
Romanée-Conti
rosé. See wine, rosé
Ruby Cabernet, 53

S
Saccharomyces
 bayanus, 195
 cerevisiae, 195–196
 cerevisiae galactose, 195
 screening for, 287–290
 strains, 199–200, 202–205,
 206–209, 248–249
 uvarum, 195
Sangiovese, 53, 203–204
sanitation, 97–103
sanitization, 97–103, 306–309
Sauternes, 47, 120, 201, 213, 316, 320
Sauvignon Blanc, 46–47, 51, 199,
 202–204, 219, 225, 248, 286, 315,
 320, 332
scale, 96–97
Scottzyme
 Color Pro, 168, 183
 Color X, 183
screw caps, 188, 355–356, 365, 368–369
sedimentation, 29, 252, See also lees
Sémillon, 47, 51, 203, 320
Seyval Blanc, 46
SG. See Specific Gravity
Sherry, 32
Shiraz. See Syrah
SI, 25
SIHADEX, 132–133, 135, 144, 147
silicon dioxide, 442–443
Sinatin, 335–336
siphons, 91–92
skin cooling, 82–83
smell
 acetaldehyde, 148
 barnyard, 290–292, 301, 431, 449
burnt-match, 149, 440
burnt-rubber, 210, 429, 440–443
geranium, 238, 298, 431, 448
moldy smell, 431, 449
musty smell, 431, 449
nail polish remover, 293, 428, 439–440, 343
rotten-cabbage, 210, 441
rotten-egg (H₂S), 36, 186, 210–211, 218, 429, 440–443
sewer, 211, 218, 441
Sherry, 148, 428, 438–439
sulfur dioxide, 149
sulfur (burnt-match), 149, 428, 440
vinegar, 121–122, 143, 235, 428, 439–440
yeasty, 429, 443
SO₂. See sulfur dioxide
soda ash, 99. See also sodium carbonate
sodium carbonate, 98, 99, 344
carbonate peroxide, 99. See also sodium percarbonate
carbonate peroxyhydrate, 99. See also sodium percarbonate
hydroxide, 123, 128–129, 160
hypochlorite, 100. See also chlorine
metabisulfite, 151–153, 296
percarbonate, 98, 99, 344
phosphate, 212
solids,
total dissolved, 32, 40–41, 43, 45, 48, 252–253, 258, 277
total soluble, 32
sorbate. See potassium sorbate
sorbic acid. See acid, sorbic
sparkling
Icewine. See Icewine, sparkling

wine. See wine, sparkling
Sparkolloid, 258, 265–266
Specific Gravity, 107–113, 463–469
Spin Doctor, 358
spinning cones, 246
See autolysis. See oak, barrel spoilage problems. See oxidation
See also acidity, volatile
Acetobacter. See spoilage, acetic
Brettanomyces. See spoilage, yeast
D-lactic, 121. See spoilage, lactic
hydrogen sulfide. See hydrogen sulfide
lactic, 121, 174, 215, 230, 245, 287–288, 292–296, 301, 431, 448, 449. See also oak barrel spoilage problems
Lactobacillus. See spoilage, lactic.
See also spoilage, microbial
microbial, 29, 97–99, 140, 149–150, 154–155, 173–174, 180, 182, 286–296, 301. See also oak barrel spoilage problems
oxidation, 147–151, 175, 180, 182, 287
Pediococcus. See spoilage, microbial. See also spoilage, lactic
TCA, 100–102, 340, 366–367, 369, 449
yeast, 146, 148–149, 154, 287–295, 301. See also Brettanomyces.
See also mycoderma. See also oak, barrel spoilage problems
stabilization, 29, 57, 155–156, 251,
chemical, 252, 282–286
color, 140, 148, 166, 168–170, 177, 182–183, 186–187, 189, 192, 300
physical, 252, 282–286
tartrate. See stabilization, cold stabilizing filtration. See filtration, stabilizing sterile filtration. See filtration, stabilizing sterilization, 97–98. See also sanitization. See also stabilization, microbial structure, 105–106, 164–166, 177, 185, 194, 222
sucinic acid. See acid, succinic
sucrose, 28, 42, 106–107, 116
sugar, 28, 48–49, 54, 106–118, 432–433
analysis and control, 106–118, 426, 432, 463–469
beet, 28, 116
cane, 28, 106, 116
chaptalization, 116–118
corn, 28, 107, 116
dextrose, 28, 107, 116
fermentable, 28, 48–49, 54, 106–107
fructose, 28, 42, 49, 54, 106–107
glucose, 28, 30, 49, 54, 106–107
liquid–invert, 42, 117–118
reagent tablets, 113–115
sucrose, 28, 42, 106–107, 116
sweetener-conditioner, 117–118
unfermentable, 54, 106
SULFACOR, 125–126, 158–159
sulfite, 29, 40–41, 99, 102, 146–147, 149–165, 179, 296. See also potassium metabisulfite. See also sodium metabisulfite. See also sulfur dioxide
Sulfite Calculator, 164–165
sulfur, 149, 211, 337–338, 428, 440
citric solution, 99–100, 340–341
analysis and control, 146–165
bound, 149–150, 159–162
molecular, 151–152
production, 201, 210–211, 245
Ripper-method titration, 156–158
total, 149–150, 159–162, 234
sulfuric acid. See acid, sulfuric
sulfurous acid. See acid, sulfurous
Sultana. See Thompson Seedless
Super Automatic Bottle Filler, 360–361
Superfood, 212
Superjet, 273–277
sur lattes, 389
sur lie, 222–223, 331. See also bâtonnage. See also lees, stirring
sorpointes, 354, 389, 392–393
sweetness. See sugar, residual
Syrah, 53, 178, 203–205, 249, 334, 376
Système International d’Unités, 25

T
2,4,6-trichloroanisole. See TCA
2-in-1 Bottle Washer, 357
3-methylbutyric acid. See acid, 3-methylbutyric
TA. See acidity, total titratable

tank
care, 102–103
cold maceration in, 183–185
stainless steel, 72, 77–85
variable-capacity, 77–85, 185
volume, 85

extraction. See also phenols.
See also riddling aid
Tannisol, 298
tartaric acid. See acid, tartaric

tartrates, 99, 133–134, 145, 282–285, 430, 444–445. See also acid, tartaric. See also potassium

bitartrate. See also stabilization, cold
TCA, 100–102, 340, 366–367, 369, 431, 449
TDS. See solids, total dissolved
teinturier, 46
Tempranillo. See Valdepeñas
Tenco
ENOLMASTER, 361–362
ENOLMATIC, 362
terroir, 34
thermometer, 82, 92–93
thiamin, 212
Thompson Seedless, 51
tirage, 382
titratable acid. See acidity, total

titratable
titration, 123–124, 137, 159–161
Ripper-method, 156–158
Titrets, 156–158
topping, 73, 255–258
gun, 256–258
total acidity. See acidity, total titratable
total dissolved solids. See solids, total
dissolved
total SO₂. See sulfur dioxide, total
total soluble solids. See solids, total
soluble
traditional method. See méthode

champenoise
Trebbiano, 51, 316
trichloroanisole. See TCA

Tri-Clover fittings, 81–82, 84
Tronçais, 327
TSS. See solids, total soluble
tyrosinase, 147
U
Ugni Blanc. See Trebbiano
ullage, 255–256, 327, 365
U.S. system, 25
V
V Vessel, 73–75
VA. See acidity, volatile
vacuum

concentrator, 44
distillation, 246
Valdepeñas, 53, 249
Van de Water, Lisa, 138
Vandergrift, Tim, 442–443
variable-capacity tanks (VCT). See
tank, variable-capacity
INDEX

varietaIs, 34, 313–314. See also grape varieties
vats, 76–77
vertical press. See press
Vidal, 199–200, 202, 205, 414
Vignoles, 46
vin de glace, 414
vin de goutte, 69. See also juice, free-run. See also wine, free-run
vin de presse, 69. See also juice, press-run. See also wine, press-run
vinification, 28, 48–49. See also fermentation, alcoholic. See also winemaking

Vinoferm
acid test kit, 94, 126
free SO₂ test kit, 158–159
vinometer, 93–94
Vintners Quality Alliance, 413
vintrap, 388–389, 393
Viognier, 51, 248, 316
vitamin
B₁, 212
C. See acid, ascorbic

Vitis, 35
labrusca, 46
riparia, 46
vinifera, 45–48, 50–53
volatile acid. See acidity, volatile
VQA. See Vintners Quality Alliance

W
Wallerstein Differential (WLD)
medium, 288, 293–295
Wallerstein Nutritional (WLN)
medium, 288, 293–295

water, 54, 61, 98
addition, 129, 135, 142, 145–147
hard, 98
soft, 98

White Labs
malolactic culture, 233
MicroQit DETECT, 288, 291–292, 343–344
Wallerstein Test Kit, 288, 292–295, 343
Wild Yeast Test Kit, 287–290

yeast. See yeast, White Labs
Wild Yeast Test Kit, 287–290

wines, 28
blanc de blancs, 31, 219, 385. See also wine, sparkling
blanc de noirs, 31, 48, 219, 385. See also wine, sparkling
blush. See wine, rosé
Champagne, 31, 48, 222, 314, 317, 381–400. See also wine, sparkling
concentrate, from, 42–45, 57, 61, 64, 195, 232, 252–253
corked, 100–102, 449
dry, 32, 109, 113–114, 199–200, 202–205, 315–318
fortified, 32. See wine, Port
free-run, 69, 193–194, 225
fresh juice, from, 39–41, 56–57, 62–63
Icewine, 120, 199–200, 205, 316, 334, 413–424
Icewine, sparkling, 418–424
key ingredients in, 54–55
medium-sweet, 32, 113–114
off-dry, 32, 113–114
Port, 32, 201, 227, 319, 334, 407–411
press-run, 69, 193–194, 225
reconstituted juice, from, 41, 56–57, 62–63, 195
red, 31, 175–185, 215–218, 332–333
rosé, 31, 56, 178, 199–200,
autolysis. See autolysis
Brettanomyces. See Brettanomyces
Candida mycoderma. See Candida mycoderma
Dekker. See Dekker
encapsulated, 246
floculation. See floculation
indigenous, 195, 224, 287–288. See also yeast, Saccharomyces,
screening for
inhibition, 227–229. See also potassium sorbate
inoculation. See inoculation
inoculum. See inoculum
Lallemand, 196, 199, 206–209, 248–249
Lalvin. See yeast, Lallemand
Lesaffre, 196, 200, 248–249
Mycoderma. See mycoderma
nutrients, 41, 201, 211–213, 214, 220, 434
RED STAR. See yeast, Lesaffre
rehydration, 214
Saccharomyces bayanus, 195
Saccharomyces cerevisiae, 195–196
Saccharomyces cerevisiae galactose, 195
Saccharomyces, screening for,
287–290
Saccharomyces uvarum, 195
spoilage, 146, 148–149, 154, 287–295, 301. See also
Brettanomyces. See also mycoderma. See also oak,
barrel spoilage problems
starter, 215, 433
starter, for sparkling Icewine, 421
starter, for sparkling wine, 386
White Labs, 197–198, 202–203, 248–249
wild. See yeast, indigenous
INDEX

Wyeast, 197, 204–205, 248–249
yield, 71, 116
Yquem, Château d’, 31, 320, 479

Z
Zinfandel, 53, 199–200, 202–203, 205, 219, 249
Zoecklein, Bruce, Dr., 189, 331